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Chapter 1

Introduction

1.1 Motivation

The electronic industry has seen rapid miniaturization since 70’s following Moore’s law,

proposed in 1965 by Gordon Moore [1]. It is an empirical law which predicted that in a

dense integrated circuit, the number of transistors doubles every two years. For several

decades, semiconductor industry has been guided by this law. Modern day integrated

circuits now contain millions of transistors with their sizes smaller than 100 nm. More and

more materials with desirable properties to be used in these devices are being studied. The

field of spintronics has emerged rapidly in this regard. Spintronics, as the name suggests,

utilizes the spin of an electron and its interactions which lead to various interesting and

exotic phenomena like spin-valley physics, quantum spin hall effect etc and the aim is

that they will provide an alternate technology as well as a route to a new generation of

of more efficient devices. As a result, there is an upsurge in understanding these spin

induced phenomena in materials.

Spin is a quantum mechanical property of an elementary particle, which has a quantized

value and can be measured. As described by Landau and Lifshitz [2], the spin of an

electron is stated to be “This property of elementary particles is peculiar to quantum

theory and therefore has in principle no classical interpretation. In particular, it would

be wholly meaningless to imagine the ‘intrinsic’ angular momentum of an elementary

particle as being the result of its rotation about its own axis.” In 1925 Ralph de Laer

Kronig, after the discovery of anomalous Zeeman effect, in order to explain it for the first

time, proposed that electrons poses another kind of momentum apart from the angular

momentum which comes because of its rotation about its own axis [3]. He however

never published this idea. A few months later George Uhlenbeck and Samuel Goudsmit

1



2 Chapter 1 Introduction

published similar idea about electrons spinning around its own axis giving rise to an

angular momentum [4]. However it was Wolfgang Pauli in 1927 [5], who worked out

the mathematical theory of spin and it was established that it is a quantum mechanical

entity and has no classical analogue. Ever since its discovery, it has been widely studied

and its existence can be experimentally inferred by experiments like the Stern-Gerlach

experiment [6–8]. Because of the relativistic nature of an electron, when it moves in an

electric field of the nucleus of an atom, it experiences a magnetic field in its rest frame

through Lorentz transformation of the electric field. The spin of the electron interacts

with this magnetic field and gives rise to what is called the spin-orbit effect. In solids, this

effect give rise to many interesting and exotic phenomena like spin-splitting of bands in

systems which lack inversion symmetry [9–12], quantum spin hall effect [13–16] etc. Two

dimensional materials provide a very rich playground to investigate these effects. The

main aim of this thesis is to understand and investigate some of these exciting phenomena

due to spin-orbit coupling in low dimensional compounds. We first present a discussion

of the form of the spin-orbit coupling term in the next section.

1.2 Spin-Orbit Coupling

In this section we discuss a semi classical approach to deriving the form of the spin-orbit

coupling term in an atom. In order to do that, let us consider a hydrogen like system

where an electron is orbiting around a positively charged nucleus with a velocity ~vorbit in

an orbit with a radius ~r. Let the charge on the nucleus be Ze, where, Z is the atomic

number of the atom and e is the charge of an electron. Let us further assume that the

magnetic moment of the electron is ~µe. While the electron is orbiting around the nucleus,

it feels the electric field due to the presence of the positively charged nucleus of the atom.

Now, since we know that electron is a relativistic particle, it experiences a magnetic field
~B in its own rest frame, due to Lorentz transformation of the electric field. The interaction

energy (HSO) of the electron due to the appearance of this magnetic field is given as

HSO = − ~µe · ~B (1.1)

We know that magnetic moment of an electron can be written in units of Bohr magneton

(µB), its spin and the gyromagnetic ratio as

µe = −g0µB~s (1.2)
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Using this definition in Equation 1.1, we get

HSO = g0µB ~B · ~s (1.3)

Now if we look at this from the frame of the electron, we have electron at rest and the

nucleus moving around in an orbit whose radius is now given as ~r and the velocity with

which the nucleus is revolving around the electron is ~vorbit. Now we apply Biot Savart law

and calculate the magnetic flux density ~B0 at the point where the electron is. This can

be written as follows

~B0 = Ze
~r × ~vorbit
4πε0c2r3

(1.4)

here ε0 is the permitivity of free space and c is the speed of light. Since we know that

momentum can be written as ~K = m~r × ~vorbital and ~K can be quantized in units of ~ as
~K = ~~L the magnetic field expressed in Equation 1.4 can therefore be written as

~B0 =
Ze~~L

4πε0mc2r3
(1.5)

Now putting this value of B0 from Equation 1.5 back in Equation 1.3, we get the following

HSO = g0µB~
Ze

4πε0mc2r3
~L · ~s (1.6)

After Thomas correction of the factor of 1/2 which arises due to the relativistic nature of

electron [17] and needs to be put in externally here.

HSO = g0µB~
Ze

8πε0mc2r3
~L · ~s (1.7)

We also know that for a |n, l〉 electronic state, 〈r−3〉 can be written as

〈r−3〉n,l =
2Z3

a30n
3l (l + 1) (2l + 1)

(1.8)

where a0 is the Bohr’s radius, n is the principle quantum number and l is the angular

quantum number. Putting Equation 1.8 in Equation 1.7 we get

HSO =
g0µB~Z4e

4πε0mc2a30n
3l (l + 1) (2l + 1)

~L · ~s = λ~L · ~s (1.9)



4 Chapter 1 Introduction

where

λ =
g0µB~Z4e

4πε0mc2a30n
3l (l + 1) (2l + 1)

(1.10)

and it is called the spin-orbit coupling constant. Looking at the Equation 1.10 carefully,

we see that, the spin-orbit constant λ varies with the atomic number as Z4. As a result,

the value of this constant increases as we go to heavier elements and the effects of spin-

orbit coupling becomes more and more prominent in materials containing heavy elements.

λ also has a dependence on the principle quantum number n as n−3. It is therefore the

ratio of Z4

n3 which dictates the value of λ in an isolated atom where hydrogenic picture

holds. Moving away from the hydrogenic picture, however, this dependence gets weaker.

It varies from 20-40 meV in 3d ions [18] to 200-500 meV in 5d ions [19].

In a solid if we look at the spin-orbit interaction, we find that the electric field which gives

rise to this effect has several different origins. The electrons in the conduction band in a

solid are free to move within the solid and can be seen as quasi free particles. These quasi

free electrons do not experience a very strong electric field by the nucleus of the atoms.

They can however experience electric field whose origin can be different.

In two dimensional materials with surfaces or interfaces such as in heterostructures, the

electric field generated due to an internal potential gradient can lead to Rashba spin-orbit

effects, which was named after E. I. Rashba [20]. An external electric field enhances

this interaction [21–24]. Sometimes in an asymmetric crystal, like GaAs, the electrons

moving in the crystal’s asymmetric potential experience an electric field which results in

an intrinsic spin-orbit interaction. This was first studied by Dresselhaus for zinc-blende

structures [25]. It is called Dresselhaus interaction. This effect [26–29] in systems with no

inversion symmetry leads to phenomena like splitting of the bands into spin up and spin

down bands, which can provide separate spin channels for transport in these materials

and can be of use in spintronic devices. In systems where inversion symmetry is preserved,

i.e if ~r → −~r, the crystal lattice remains the same upon this operation. Hence we have

E (k, ↑) = E (−k, ↑) (1.11)

and

E (k, ↓) = E (−k, ↓) (1.12)

Also, we know that according to Kramer’s degeneracy theorem, which says that in a

system where time reversal symmetry is preserved, states which have opposite momenta
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and spin must have the same energy. We therefore have

E (k, ↑) = E (−k, ↓) (1.13)

Taking into account all three equations we get

E (k, ↑) = E (k, ↓) and E (−k, ↑) = E (−k, ↓) (1.14)

This means that since spin-orbit coupling cannot induce magnetism and break time re-

versal symmetry, it can not result in a net spin splitting in a system which has inversion

symmetry in absence of an external magnetic field. In this thesis we have focused mainly

on the electronic structure of two dimensional materials where inversion symmetry is bro-

ken and the effect of spin-orbit interactions on the electronic structure of these materials

is investigated. To examine this effect it is important to understand some properties of

two dimensional materials.

1.3 Two dimensional materials

The past few decades have seen an upsurge in the research of nanoscience and nano

materials. These are materials whose sizes ranges from one to ten nanometers in atleast

one direction. If the size of the materials are restricted only in one direction, then one gets

two dimensional(2D) materials with bulk like periodicity in two directions but confinement

in one. If the size of the materials are restricted in two directions, then we get one

dimensional(1D) materials. The interest in going from bulk to 2D and 1D materials

lies in the unusual change in properties shown by these low dimensional materials. CdS

nanocrystals for example, show a bandgap change from 4.5 eV to 2.5 eV as their diameter

changes from 13 Å to 39 Å [30]. This tunability of bandgap with size make them suitable

candidates to be used in various opto electronic devices [31, 32]. In other instances,

magnetism can be induced with the change in dimensionality. For instance thiol-capped

gold nanoparticles at 1.4 nm size [33] become magnetic. Other properties like ionization

potential, melting point etc. have also been reported to vary with size, as can be seen in

case of platinum, where its ionization potential varies from 9.0 eV for a single atom to

the work function of its bulk form which is 5.3 eV [34]. Also in case of gold, it has been

reported that its melting point in the bulk form is 1336 K but for 2.5 nm, it is reported

to be 930 K [35].

As we go from bulk to 2D materials, these change in properties can be attributed to

mainly two effects, surface effects and quantum confinement effects.
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In the nano regime, materials have large surface to volume ratio. The atoms on the surface

have less number of neighbors than the ones present in the bulk. As a result, the atoms on

the surface has high affinity to form bonds compared to their bulk counterpart. This makes

the surface atoms very suitable to be used as catalysts. For example, gold nanoparticles

have been used as catalysts in many organic reactions [36]. Iron nanoparticles have been

used as a catalysts for production of lower olefins, which are key ingredients of drugs,

cosmetics and plastics [37].

In a semiconductor, upon excitation, an exciton is formed, which is a pair of electron and

a hole bound together by Coulomb interaction between them. This exciton has a radius

called Bohr exciton radius, which is the separation between the electron and the hole upto

which they form a bound state. In a bulk semiconductor, this exciton moves freely in the

material [38]. This is however not the case as we go to lower dimension where the size

of the material becomes comparable to the Bohr exciton radius. Also, in this limit the

wavefunction of the electron and the hole start getting effected due to the confinement

effect. This modifies the electronic structure of the material. This effect is called quantum

confinement effect. It has been studied extensively in silicon and germanium quantum

dots [39], quantum wells [40], nanowires [41] and other nanomaterials [42]

Much before stable two dimensional materials were discovered, people have been study-

ing these two dimensional systems. For example high temperature superconductivity in

cuprate [43], where CuO2 plane has confinement of superconductivity and some of the

examples mentioned earlier. But it was after the successful exfoliation of graphene in 2004

by Novoselov and Geim by Scotch tape method [1, 2], the research in the field of layered

two dimensional material saw an upsurge. Layered materials are one where atoms are

arranged in layers, with the inplane bonding being covalent in nature whereas the atoms

in one layer are bonded to the ones in the next layer by weak Van der Waals forces. As a

result, it is easy to remove them layer by layer. Ever since various methods like chemical

vapor deposition [46, 47], epitaxial growth and other advances in mechanical exfoliation

techniques [50, 51] have been used to obtain a wide variety of layered two dimensional

materials. An overview of the family of two dimensional materials have been shown in

the Figure 1.1.

These two dimensional materials have varied properties ranging from insulators like hexag-

onal boron nitride (h-BN) which has a band gap of more than 5eV to semiconductors like

transition metal dichalcogenides whose band gap varies from 0.5-3.0 eV to metals like

TiS2, VOs2 etc [52]. The bandgap of these two dimensional materials cover a wide range

of the electromagnetic spectrum, giving rise to opportunities to be used in various sectors.
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Figure 1.1: Family of two dimensional materials. Reproduced from [52]

A schematic showing different two dimensional materials with the respective part of the

electromagnetic spectrum to which their bandgap belongs to, is given in Figure 1.2.

More and more materials are being explored which can have two dimensional form. Ionic

semiconductors like ZnO which favors polar wurtzite structure in bulk have been studied

widely for a possible two dimensional form [16]. It was seen that even in an unbiased

condition, when the thin film of ZnO was grown, it prefers the polar c direction, which was

unexpected because with a polar surface one would expect the surface energy to diverge

beyond a few layers. it was however found out on examination that the thin films of ZnO

undergoes structural transformation to form planar graphitic monolayer [17] to get rid of

the problems associated with a polar surface [18]. While going from the bulk wurtzite

form to the planar graphitic form, there is a reduction in coordination number which

is compensated by shortening of the bondlengths in the planar graphitic form. In this

thesis, we asked the question what happens when we form binary semiconductors involving

elements beyond the first row of the periodic table? We tried to investigate if a graphitic

phase in such cases exist at the monolayer limit by taking various examples belonging to

II-VI and III-V rows of the periodic table because as we move beyond the first row the

atom size of the atoms increases and hence the Coulomb repulsion between the electrons

on different atoms increases in a planar graphitic form. We therefore propose a non-polar

buckled structure for these semiconductors at the monolayer limit which decreases the
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Figure 1.2: Two dimensional materials covering dirrerent range of electromagnetic spectra.
Reproduced from [53]

Coulomb repulsion between the electrons on different atoms. We also looked at another

way of reducing the Coulomb repulsion by applying a biaxial tensile strain on the planar

graphitic form and then went on to study the effect of strain on their electronic structure

and propose strain as a route to bring the valence band maxima (VBM) in these planar

graphitic monolayers from Γ to K thus making the splitting of valence band maxima at

K, due to spin-orbit coupling useful for application purpose.

Apart from these binary semiconductors, another class of materials, where spin-orbit cou-

pling plays a very important role in the electronic structure are transition metal dichalco-

genides and monolayers of heavy metals which are predicted to be quantum spin hall

insulators, and hence they also form an important part of this thesis. We therefore dis-

cuss them in detail below with emphasis on their structure and their electronic structure.

Transition metal dichalcogenides (TMDs) is the name given to a class of materials with

MX2 as the general formula, here M represents a transition metal and X represents a

chalcogen atom. These are layered Van der Waals materials, where atoms in one layer

are covalently bonded to each other but each of the layers are weakly attached to each

other by Van der Waals interactions. Since the layers have weak interactions between

them, it is easy to separate the layers and form monolayer, bilayer, trilayer and so on.

This property of TMDs is very useful, as it allows us to study their properties at extreme
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two dimensional limit, whose properties differ significantly from that of the bulk. For

example MoS2, a member of the TMD family has a bulk bandgap of 1.3 eV [57] and is

an indirect bandgap semiconductor, however when we look at the same material at the

monolayer limit, we see that the monolayer is a direct bandgap material with a bandgap

of 1.9 eV [58]. This has been seen in a lot of other members of TMD family [60].

TMDs are found in three main types of polymorphs. These are called 1T, 2H and 3R

where T represents trigonal, H hexagonal and R rhombohedral [61]. The schematics of

these three polymorphs are shown in Figure 1.3.

Figure 1.3: Different polymorphs of TMDs. Reproduced from [62].

In each of these cases, a and b axes are along the minimum chalcogen-chalcogen distance

while the c axis is the axis perpendicular to the layers. In the 1T polymorph, the transition

metal and the chalcogen atoms form an octahedra whereas in 2H and 3R they form a

trigonal prismatic structure. 2H and 3R differ in the stacking pattern of different layers

as can be seen in the Figure 1.3. 2H is the most common and thermodynamically most

stable type of polymorph. Monolayer of 2H polymorph is called 1H. In this thesis we

have mainly focused on the 1H and 2H polymorph of TMDs and looked at their electronic

structure in detail with an emphasis on the role played by spin orbit coupling.
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Looking at the crystal structure of 2H polymorph of these materials, we can see that in

a unit cell there is one transition metal and two chalcogen atoms, where the transition

metal atom is sandwiched between the chalcogen atoms. In the 2H stacking when the

next layer of MX2 is placed it is done such that the transition metal atom sits on top of

the chalcogen atom as can be seen in the middle panel of Figure 1.3. Each MX2 motif

however is rotated by an angle of 60 degrees with respect to each other. Now if we look

at the primitive unit cell of this structure and consider ~a1 and ~a2 to be the two primitive

lattice vectors of the real space two dimensional lattice and ~a be the lattice constant, we

can represent them as

~a1 =
a

2

(√
3x̂+ ŷ

)
; ~a2 =

a

2

(
−
√

3x̂+ ŷ
)

(1.15)

Also the reciprocal lattice vectors ~b1 and ~b2 of such lattice are described as

~b1 =
2π

a

(√
3

3
k̂x + k̂y

)
; ~b2 =

2π

a

(
−
√

3

3
k̂x + k̂y

)
(1.16)

The hexagonal Brillouin formed by this is shown in Figure 1.4.

Figure 1.4: Hexagonal Brillouin zone of TMDs with high symetry points indicated. Re-

produced from [63]
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Figure 1.5: Opposite splitting of K and -K valley in monolayer of TMDs. Reproduced
from [64]

This hexagonal Brillouin zone of these TMDs play a vital role in their electronic structure.

In monolayer 1H TMD, which lacks inversion symmetry,the valence band maxima (VBM)

lies at the edge of the Brillouin zone at K point and forms a valley. In the absence of

spin-orbit interactions, these valleys are all equivalent. However, with the introduction of

spin-orbit coupling as discussed in the previous section the bands at K and -K splits in

the opposite direction. This has been pictorially depicted in Figure 1.5 where we can see

that the VBM at K points splits up with up spin higher in energy than the down spin

however at the -K point we can see that the down spin in higher in energy than the up

spin [64]. Since there is no magnetism in the system and the time reversal symmetry is

preserved as it can’t be broken by spin-orbit interaction, the magnitude of the splitting

at K and -K point is the same.

This spin-splitting of VBM in TMDs have been extensively studied both experimentally

and theoretically for various members of the family [65–68]. The magnitude of the spin-

splitting is different for different members [69]. In this thesis, within a tight binding

model, we have addressed this aspect of difference in the magnitude of spin-splitting in

different members of TMD family and have successfully captured the splitting pattern

within our model. Figure 1.6 shows angle resolved photo emission spectra (ARPES)

obtained for monolayer of MoS2 along Γ to K direction by Wencan Jin et al. in 2013 [70].

Theoretically calculated bandstructure using Density Functional Theory (DFT) along Γ

to K direction for MoS2 by Z. Y. Zhu et al. in 2011 [66] is superimposed on top of it. At

K we can see that there are two bands which results from the splitting of the VBM at

the K point. At the -K point this splitting will be same in magnitude but opoposite in

direction.
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Figure 1.6: Angle Resolved Photo Emission Spectroscopy (ARPES) band dispersion of
monolayer of MoS2 in the Γ to K direction reproduced from [70] as well as bandstructure
calculated from Densiity Functional Theory (DFT) along Γ to K direction superimposed
on it reproduced from [66]

The opposite splitting of VBM at K and -K allows labeling of these two valleys with

different spin index, which opens up new avenues to explore exciting physics [13,14]. This

introduction of new degree of freedom is referred to as valley degree of freedom and can

be viewed as pseudospin. Using light of different polarization (left circularized or right

circularized) one can selectively polarize each of the valleys depending on the selection

rules. In monolayers of various TMDs this selective polarization of valleys has been shown

experimentally by various groups [73, 74]. We present results of one such study done on

WSe2 monolayer by Xiaodong Xu et al. in 2014 [64]. In this experiment, electron-hole

pair in one valley is selectively excited depending on the polarization of the incident light.

The results are shown in Figure 1.7

The two opposite valleys (K and -K) have large separation in momentum space, due to

which intervalley scattering is suppressed making this a robust route to selectively polarize

the valleys.

Now when we go to the bilayers of these materials, and place another of the MX2 motif

on top of the monolayer, we find that, various stackings are possible depending on the

arrangement of atoms. There are five high symmetry stackings proposed in literature as

shown in Figure 1.8.
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Figure 1.7: Selective valley polarization in monolayer of WSe2. Reproduced from [64]

Figure 1.8: High symetry stackings possible in bilayer TMDs. Reproduced from [75]
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Figure 1.9: Circular luminnescence for monolayer (blue) and bilayer (green) of MoS2.
Left panel of the inset shows 2H stacking of bilayer MoS2. Right panel of the inset shows
Photoluminescence spectra for monolayer (blue) and bilayer (green) MoS2. Reproduced
from [76]

Considering bulk stacking(AA’) in bilayers, one finds that there is a point of inversion

symmetry in these structures. As a result, there is no net spin-splitting of the VBM

at K and hence there is no selective polarizarion of the valleys. This aspect has been

demonstrated experimentally, by Hualing Zeng et al. in 2012 [76]. Their results have

been presented in Figure 1.9. Inset of Figure 1.9 shows photoluminescence spectra for

both monolayer (blue) and bilayer (green) MoS2 which shows excitation at 1.96 eV at 10 K

in both the cases. This represents the K valley excitation when no particular polarization

was selected. However the main panel of the Figure 1.9 shows spectra of monolayer (blue)

and bilayer (green) at 10 K. We can see that for bilayer there is negligible emission at 1.96

eV in this case, whereas for monolayer there is a significant emission, indicating selective

polarization of the valley in the case of the monolayer as opposed to the bilayer.

Circular polarization in bilayers can be achieved if the inversion symmetry associated with

the 2H bilayer of TMDs can be broken. Usually to break the inversion symmetry in the

bilayers, one has to apply an external electric field [77]. In this thesis, we study the twisted

bilayers, where one of the layers is rotated with respect to another and hence the inversion
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symmetry is broken in such bilayers. We then go on to find some interesting aspects of

spin-splitting in these class of bilayers which emerge from the hexagonal symmetry of

these materials.

So far we have discussed spin-valley physics in TMDs as a result of spin-orbit interactions.

Spin-orbit interactions also lead to other exotic phenomena like quantum spin hall effect

in some two dimensional materials. Predictions have been made for monolayers of heavy

metals. These are another class of materials studied in this thesis. We therefore discuss

quantum spin hall effect in detail in the next section.

1.4 Quantum Spin Hall Effect

Quantum spin hall (QSH) insulators are a class of two dimensional materials which have

insulating bulk phase at the same time, edges are conducting and are protected topolog-

ically from back scattering. The edge states in these materials have two oppositely spin

polarized channels for propagation. A schematic of this has been pictorially depicted in

Figure 1.10.

Figure 1.10: Spin polarized channels in QSH insulators. Reproduced from [78]

These class of materials have very different electronic structure from normal insulators

or even quantum hall (QH) insulators. In normal insulators, the atoms keeps the outer

electrons pinned and there is a gap at all momentum values as can be seen in Figure

1.11a. As a result, a band gap is present in the bandstructure of insulators. In quantum

hall insulators, an external magnetic field keeps the electrons pinned and a gap is opened.
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Edge states are however present in these materials and these edge states cross the gap and

carry current. This can be seen in Figure 1.11b. Now in quantum spin hall insulators,

a bulk gap is always present and spin-orbit coupling plays a vital role in splitting the

conducting edge states into up spin and down spin channels (figure 1.11c).

Figure 1.11: Normal insulators, quantum hall insulators and quantum spin hall insulators.

Reproduced from [79].

QSH was first predicted in 2005 for graphene by Kane and Mele [48, 49]. In 2007 it was

first experimentally realized in mercury telluride quantum wells [50]. After this a lot of

other materials have been predicted to be QSH insulators among these are monolayers of

heavy metals like bismuth, antimony etc [84,85]. Planar graphitic monolayers of bismuth

has recently been experimentally shown by F. Reis et al. in 2017 [67] to have conducting

edge states residing in the bulk gap (Figure 1.12).
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Figure 1.12: conducting edge states in graphitic monolayer of bismuth. Reproduced

from [67]

In this thesis we have studied this material and its electronic structure. We reevaluate

the method of realizing planar graphitic bismuthene on the substrate and propose a novel

route to realize a quasi free standing bismuthene, keeping its electronic structure intact.

So far in this thesis we have discussed the effect of spin-orbit coupling on two dimensional

materials like TMDs and QSH insulators, where the system does not have intrinsic mag-

netism. Spin-orbit interactions also play a very important role in the electronic structure

and long range magnetic ordering in magnetic materials. In order to study this aspect, we

chose one of the well known example in literature which is Sr2IrO4. Sr2IrO4 is a transition

metal oxide (TMO) with iridium being the transition metal (TMO). In the next section

we discuss briefly the TMOs in general and some of its properties, which will help us

understand the iridates better.

1.5 Transition Metal Oxides

Transition metal oxides (TMOs) constitute a very important class of solids. They exhibit a

large variety of structures and properties. The unique nature of the outer d electrons is the

reason for the unusual properties of TMO. The metal−oxygen bond in these compounds

can vary from nearly ionic to metallic. Oxides like RuO2 [86] and LaNiO3 [87] are metallic

whereas BaTiO3 [88] on the other hand is highly insulating. There are some oxides which

show metal to insulator transition with change in temperature, pressure, and composition,
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example V2O3 [89]. These oxides also show variety of magnetic properties for example

CrO2 [91] and La0.7Sr0.3MnO3 [92] are ferromagnetic whereas NdNiO3 [93] and Sr2IrO4 [?]

are antiferromagnetic. Transition metal oxides can be best described by the Hubbard

model which is given by the following Hamiltonian:

H = −t
∑
<i,j>

∑
σ

(c†j↑ + cj↓) + U
∑
j

n̂j↑n̂j↓ (1.17)

Here c†jσ creates an electron at the jth site with spin σ and cjσ anihilates an electron

from the jth site with spin σ. n̂j↑ is the corresponding occupation number operator. This

Hubbard model is a many body Hamiltonian which describes two opposing tendencies.

The first term describes the kinetic energy of the electron. It is also called the hopping

term. It tends to delocalize the electrons. The second term is the electron-electron

interaction term. It is here approximated by the onsite Coulomb interaction. This term

wants to localize the electrons. A lot of properties of TMOs are determined by relative

strength of U/t or U/W , where W is the bandwidth. In transition metal oxides if we go

from 3d to 4d to 5d the spatial extent of the orbitals increases, as a result, the bandwidth

(W) increases and U decreases. The electron electron correlation is expected to be weak

as we go from 3d to 4d to 5d TMOs. With the prevailing picture of magnetism, which

is centered around moments on the localized electrons, one doesn’t expect long range

magnetic ordering in 5d TMOs. But some of the members of 5d TMOs like Sr2IrO4 and

Ba2IrO4 have been reported to be antiferromagnetic insulator.

In this thesis we examined one 5d TMO taking Sr2IrO4, which belong to a class of ma-

terial called iridates as an example to examine the role played by spin-orbit coupling in

determining long range magnetic ordering. In these class of materials most of the elec-

tronic and magnetic properties is due to the presence of d orbitals of the iriduim atom

and its interaction with oxygen. In an isolated atom, the d orbitals are all degenerate but

this degeneracy is lifted when this atom is placed in the local environment of a crystal.

In Sr2IrO4, the iriduim atom sits in the middle of an octahedra with oxygen atoms at the

corner. To see the effect of this environment, let us consider in plane view of two different

types of d-orbitals also shown in the Figure 1.13

As we can see that the dxy orbitals have a lower overlap with the neighbouring p-orbital

than the dx2−y2 orbital, and hence they will have a lower electrostatic energy as shown in

Figure 1.14
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Figure 1.13: Octrahedral environment. Reproduced from [95]

Figure 1.14: Octrahedral splitting of d-orbitals. Reproduced from [95]

In Sr2IrO4, Ir is in d5 configuration, as a result, all the electrons are present in the three

degenerate t2g orbitals and are widely separated by the unoccupied eg orbitals. This

octahedral crystal field splitting between t2g and eg orbitals in 5d compounds are large.

It leads to the quenching oft the orbital momentum from l = 2 to l = 1 [96]. The l = 1

states are characterized by |lz = 0 >= |dxy > and |lz = ±1 >= − 1√
2
(i|dxz > ±|dyz >).

Now on introduction of spin-orbit interactions these t2g states splits into Jeff=3/2 and
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Jeff=1/2 states. This plays a vital role in making this material insulating and stabilizing

long range magnetic ordering and therefore has been discussed in detail later in this thesis.

1.6 Overview of the thesis

The focus of the work carried out in this thesis is on the spin-orbit effect on the elec-

tronic structure and magnetism in low dimensional compounds. Spin-orbit coupling is a

relativistic effect which leads to many interesting properties in materials like spin-valley

physics, spin hall effect and quantum spin hall effect etc.

In Chapter 2 We discuss the various tools used in the work carried out in the thesis. The

electronic structure of the materials discussed in this thesis has been investigated theo-

retically using both density functional theory which in some instances are complemented

by model Hamiltonian calculations. Both these techniques have been discussed in detail

in this chapter.

In Chapter 3 We studied the effect of spin-orbit interactions in Transition metal dichalco-

genides. In these materials spin-orbit interactions lead to a large spin-splitting of the

valence band maximum at K at the monolayer limit where there is no inversion symmetry

present. This allows a labeling of the levels with additionally the spin index. While spin-

orbit interactions bring about a large spin-splitting at the K point, they cannot however

bring about magnetic ordering. This would then imply that one has an equivalent but

opposite spin-splitting at -K point compared to that found at K point, thereby bringing

about a coupling between the spin and valley degrees of freedom in these materials with a

lot of interesting consequences. However, on stacking a second layer of MoSe2 in the same

manner (2H) as found in the bulk, one finds that there is no net spin splitting, which has

been attributed to inversion symmetry. An obvious route to making the bilayers useful

for exploring the coupled spin and valley physics is through breaking inversion symmetry.

We examined this by rotating the top layer by an angle theta with respect to the lower

layer. We find that for some angles of rotation, the spin splitting vanishes, even though

there is no inversion symmetry in these structures. In this chapter we demonstrate and

explain a mechanism for vanishing of the spin-splitting in these systems where the hexag-

onal symmetry of the lattice brings about an unexpected dependence of the electronic

structure on the angle of rotation.

As mentioned in the previous work, the hexagonal lattice of two dimensional materials

plays an important role in its electronic structure, therefore in Chapter 4 we looked for

the structural properties of free standing II-VI and III-V semiconductors at the monolayer
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limit to explore the possibility of formation of planar graphitic hexagonal lattice. In

literature binary semiconductors like ZnO have been investigated for the possibility of

having a stable 2D structure. It was found that it undergoes structural distortion by

shortening the bondlengths to compensate for reduction in coordination number, to form

a graphitic structure. The question that we asked was what happens when we go down

the periodic table and the size of the atom increases? We find that the system undergoes

buckling. A non-polar buckled structure was found to be favoured over a polar buckled

structure. While an obvious reason for this may be traced to the contribution from dipole

dipole interactions present in the polar structure which would destabilize it with respect

to the nonpolar structure, Coulomb interactions between electrons on the cations and

anions are found to be the reason for the nonpolar structure to be favoured. A route to

tune the Coulomb interaction between the electrons on the cations and anions is through

biaxial tensile strain. This allows for a planar graphitic phase in CdS to be stabilized at

just 2% tensile strain. Strain also shifts the valence band maximum from the Γ point to

the K point, opening up opportunities for exploring spin-valley physics in these materials.

In these semiconductors, the spin-splitting is mainly due to the anion and is of the order

of 20-30 meV, we therefore we examined the possibility of stabilizing a planar graphitic

structure for monolayers of heavy metal taking bismuth as an example,as an extension of

this work where spin-orbit coupling becomes predominant as the size of the atom increases.

Predictions have been made for monolayers of Bismuth to be a topological insulator in a

graphitic lattice. The realization of such models have failed as the presence of a substrate

for growing the monolayers, usually interacts with the monolayer and makes its properties

substantially different from that of a freestanding one. In this work, we explored a route

to quasi free-standing bismuthene. This is found to have a band gap of 0.8 eV and is a

topological insulator.

So far in this thesis we have discussed the effect of spin-orbit coupling in the materials

which do not show magnetism. In Chapter 5 we investigated the role of spin-orbit cou-

pling in stabilizing long range magnetic ordering taking iridates as an example. While

studying magnetism the widely accepted idea is theat it is associated with localized elec-

trons as a result, the 3d TMOs which have highly correlated electrons are known to have

long range magnetic ordering, but as we go to 4d and 5d TMOs the electron-electron

correlation decreases and hence they are not expected to have long range magnetic or-

dering. In this thesis, we examine the case of 5d TMO taking Sr2IrO4 as an example and

investigate the role played by spin-orbit coupling in stabilizing the long range magnetic

ordering using a multiband hubbard hamiltonian. We find that for a very small range of

U, antiferromagnetic state is stable.
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Chapter 2

Theoretical Concepts

2.1 Many body Hamiltonian

Properties of materials are determined by the electrostatic interaction between its elec-

trons and nuclei. The theory for such system of interacting charged particle is inherently

quantum mechanical and can be described by time independent many body Schrödinger

equation of the form HΨ = EΨ, Here H is the many body Hamiltonian and Ψ is a set of

eigenstates of H. The many body Hamilatonian, H can be written as follows

H = − ~2

2me

∑
i

52
i −

~2

2MI

∑
I

52
I +

1

2

∑
i 6=j

e2

|ri − rj|
+

1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |
−
∑
i,I

ZIe
2

|RI − ri|
(2.1)

In the above equation, the variables i and j belong to the electrons whereas the indices

I and J correspond to the nuclei. ri and RI are the positions of the electrons and the

nuclei respectively. Similarly me and MI represent the masses of the electrons and nuclei

respectively. ZIe is the charge of the nucleus and ~ is the Plank’s constant.

The first two term in Equation 2.1 are the kinetic energies of the electrons and the nuclei

respectively where,52
i and52

I are the Laplacians containing second order derivatives with

respect to electronic and ionic coordinates respectively. The third term is the electron

electron repulsion term whereas the fourth term is the repulsive interaction term between

the nuclei. The fifth and the last term is the interaction between electrons and nuclei.

Equation 2.1 can thus be written in a compact form as

H = Te(r) + TN(R) + Vee(r) + VNN(R) + VeN(r,R) (2.2)
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Solving this many body Hamiltonian using Schrödinger equation should give us all the

properties of the system. However because of the large number of coordinates involved and

the coupled degrees of freedom, solving this many body Schrödinger equation becomes

almost impossible except for very simple cases like an isolated hydrogen atom. One

therefore has to make appropriate approximations and then solve it by various methods

like hartree [1], hartree-fock [2,3] and density functional theory [4]. In the coming sections

we will discuss one such approximation called the Born-Oppenheimer Approximation and

then the various methods to solve the many body Schrödinger equation.

2.2 Born-Oppenheimer Approximation

Born-Oppenheimer Approximation is named after Max Born, and J. Robert Oppenheimer

[5]. It is a simple yet very powerful approximation and takes advantage of the fact that

the mass of the nucleus is ∼1800 times heavier than the mass of the electron. As a result

the nucleus can be considered fixed compared to the motion of the electrons. This allows

the electron and nuclei degrees of freedom to be decoupled. As the nuclei are considered

fixed, their kinetic energy can be ignored and the nuclear-nuclear interaction term can

be considered a constant and is called Madelung energy [6]. Thus the Hamiltonian after

Born-Oppenheimer Approximation becomes

Hele
BOA = Te(r) + Vee(r) + VeN(r,R) (2.3)

This adiabatic approximation simplifies the problem to a great extent but it still remains

a many body problem. Solution to this Hamiltonian is still very difficult because of

large number of variables and the presence of electron-electron interaction term. Various

attempts have been made to further simplify the problem and solve it. In the coming

section, we will discuss one such theory, namely the density functional theory (DFT)

which describes the theeory of the analysis used in this thesis.

2.3 Density Functional Theory (DFT)

In 1964 Hohenberg and Kohn developed an approach for solving the many body system

and describing its ground state properties, which aimed at reducing the number of vari-

ables involved. It was called the density functional theory (DFT) [11]. We have used DFT

as implemented within the Vienna ab-initio simulation package (VASP) [9, 10, 25, 26] to
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study the electronic structure of materials. The fundamental proposition of DFT is the

introduction of a new variable called the electron density. It is defined as the probability

of finding an electron in a specific location around an atom or molecule. Density for an

N-electron system is derived from normalized N-electron wavefunction. Mathematically,

density for an N-electron system can be given as

n(ri) = N

∫
Ψ∗(r1, · · ·, ri, · · ·, rN)Ψ(r1, · · ·, ri, · · ·, rN)dr1dr2 · ·dr(i−1)dr(i+1) · ·drN (2.4)

For a normalized wavefunction, integrating the electron density over all space, gives the

number of electrons. The electron density is a physical quantity and it can be measured

experimentally in X-ray diffraction experiments [12]. There are many advantages of using

the electron density. It is a function of only three spatial variables where as the many body

wave-function Ψ(r) is a function of 3N variable with N being the number of electrons.

The two theorems proposed by Hohenberg and Kohn form the backbone upon which the

modern formulation of density functional theory rests [11].

The term defined in Equation 2.4 is single particle density. Similar to this , we can also

define two particle density as follows

n(ri, rj) = N

∫
Ψ∗(r1, ··, ri, ··, rj · ·, rN)Ψ(r1, ··, ri, ··, rj · ·, rN) (2.5)

dr1dr2 · ·dr(i−1)dr(i+1) · ·dr(j−1)dr(j+1) · ·drN

This two particle density can be understood as probability that an electron exists at a

point ri, in presence of another electron at a point rj

If we have a system, where two electrons are completely uncorrelated then n(ri, rj) can

simply be written as the product of two single particle density as

n(ri, rj) = n(ri)n(rj) (2.6)

But that is unfortunately not the case in real systems and we do have electron-electron

interactions, as a result, this two particle density can be written as

n(ri, rj) = n(ri)n(rj)∆n(ri, rj) (2.7)

where ∆n(ri, rj) is the correlation term and is important in the density functional theory

formulation.
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2.3.1 The Hohenberg-Kohn Theorems

Theorem 1 : The ground state electron density of a system of interacting particles in

an external potential Vext(r) is uniquely determined.

Proof: Let us assume two different external potentials, V1(r) and V2(r) differing by a

constant and giving rise to the same ground state density n(r). We further assume that

Ψ1 and Ψ2 be the the ground state wave-function corresponding to V1(r) and V2(r) and

they both gives the same ground state charge density n(r).

Now, the Schrödinger equation corresponding to these two N electron systems is given by

E1 = 〈Ψ1|H1|Ψ1〉 (2.8)

Now since Ψ2 does not corresponds to the ground state wave-function of H1, we can write

the following inequality

E1 < 〈Ψ2|H1|Ψ2〉 (2.9)

we can further write

〈Ψ2|H1|Ψ2〉 = 〈Ψ2|H2|Ψ2〉+ 〈Ψ1|[H1 −H2]|Ψ1〉 (2.10)

So now we can write the above inequality as

E1 < 〈Ψ2|H2|Ψ2〉+ 〈Ψ1|[H1 −H2]|Ψ1〉 (2.11)

E1 < E2 + 〈Ψ1|[V1(r)− V2(r)]|Ψ1〉 (2.12)

Similarly we can obtain an expression for E2

E2 < E1 + 〈Ψ2|[V2(r)− V1(r)]|Ψ2〉 (2.13)

Adding the above two equations we have

E1 + E2 < E2 + E1 + 〈Ψ1|[V1(r)− V2(r)]|Ψ1〉+ 〈Ψ2|[V2(r)− V1(r)]|Ψ2〉 (2.14)

And can be written as

E1 + E2 < E2 + E1 + 〈Ψ1|[V1(r)− V2(r)]|Ψ1〉+ 〈Ψ2|[V2(r)− V1(r)]|Ψ2〉 (2.15)
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or

E1 + E2 < E2 + E1 + 〈Ψ1|[V1(r)− V2(r)]|Ψ1〉 − 〈Ψ2|[V1(r)− V2(r)]|Ψ2〉 (2.16)

Writing this in terms of density we get the following inequality

E1 + E2 < E2 + E1 +

∫
n(r)[V1(r)− V2(r)]d3r −

∫
n(r)[V1(r)− V2(r)]d3r (2.17)

which finally gives

E1 + E2 < E2 + E1 (2.18)

This is a contradiction and hence proves that two different external potentials can not

give the same ground state density.

Theorem 2 : The statement of the second theorem is that the energy of a system

can be written as functional of the charge density (E[n(r)]). The global minimum of

this functional obtained variationally represents its ground state energy and the electron

density that minimizes this energy (E[n(r)]) is the ground state charge density of the

system.

We therefore can say that if n0(r) represents the ground state electron density of a system

then we have the following relation for any other density, n
′
(r) which is not a ground state

density.

E[n′(r)] ≥ E[n0(r)] (2.19)

2.3.2 Kohn-Sham Formulation

For a set of N interacting electrons, in an external potential Vext, we have the Hamiltonian

as H = Te + Vee + Vext. The total energy of the system as a functional of its electron

density can be written as

E[n(r)] = T [n(r)] + Eee[n(r)] +

∫
n(r)Vext(r)d3r (2.20)

In the above equation, T [n(r)] is the kinetic energy term and Eee[n(r)] is the electron-

electron interaction term. Together, these two can be written as

F [n(r)] = T [n(r)] + Eee[n(r)] (2.21)
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This term F [n(r)] is called Hohenberg-Kohn functional. At this point we try to express

both the terms of the Equation 2.21 in terms of density.

Eee[n(r)] =
1

2

∫ ∫
drirj

n(ri)n(rj)

|ri − rj|
+ ∆Eee (2.22)

or

Eee[n(r)] = EH [n(r)] + ∆Eee (2.23)

where

EH [n(r)] =
1

2

∫ ∫
drirj

n(ri)n(rj)

|ri − rj|
(2.24)

It is called the Hartree energy and represents the classical electron-electron interaction

term. ∆Eee in Equation 2.23 is due to the electron-electron correlation discussed in

Equation 2.7. Writing the kinetic energy term T [n(r)] in term of density becomes very

difficult because of the presence of a derivative term. This poses a difficult situation and

in order to solve this, the N -electron interacting system was replaced by a hypothetical

system of non-interacting system of N -electron. The electron density can now be written

in terms of these hypothetical non-interacting single electron wave-functions φi(r) known

as Kohn-sham orbitals [13] as

n(r) = 2
N∑
i=1

φ?i (r)φi(r) (2.25)

One important point to note here is that these Kohn-Sham orbitals are purely mathe-

matical entities and have no physical interpretation. The multiplicative factor of 2 in

the Equation 2.25 is due to the fact that we are dealing here without the spin degree of

freedom as a result each of the orbital is occupied with two electrons each with opposite

spins. Now we can express the kinetic energy of the N electron interacting system term

using Kohn-Sham orbitals as a sum of kinetic energies of the individual Kohn-Sham or-

bitals then this will not be equal to the kinetic energy of the real system. In order to

tackle this we write the kinetic energy term as

T [n(r)] = T0[n(r)] + ∆T (2.26)
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Now, both ∆Eee and ∆T from Equation 2.23 and Equation 2.26 respectively are due to

electron electron correlations and can be clubbed together in one term as

EXC [n(r)] = ∆Eee + ∆T (2.27)

Now using Equation 2.23, Equation 2.26 and Equation 2.27 we can rewrite Equation 2.21

as

F [n(r)] = T0[n(r)] + EH [n(r)] + EXC [n(r)] (2.28)

Now, minimizing the energy functional given in Equation 2.20 with respect to the charge

density one can obtain the ground state energy. This minimization needs to be done with

the constraint that the total number of electrons remain conserved, i.e.∫
n(r)dr = N (2.29)

This minimization is done using the Lagrange multiplier method. It can be written as

follows

δ

δn(r)

[
T [n(r)] + Eee[n(r)] +

∫
n(r)Vext(r)d3r − µL

(∫
n(r)d3r −N

)]
= 0 (2.30)

or

δ

δn(r)

[
T0[n(r)] + EH [n(r)] + EXC [n(r)]

∫
n(r)Vext(r)d3r − µL

(∫
n(r)d3r −N

)]
(2.31)

= 0

Here µL is the Lagrange multiplier constant. Equation 2.30 can also be written as

µL =
δT0[n(r)]

δn(r)
+
EH [n(r)]

δn(r)
+
EXC [n(r)]

δn(r)
+ Vext(r) (2.32)

This can also be written as

µL =
δT0[n(r)]

δn(r)
+ VXC(r) + VH(r) + Vext(r) (2.33)

with VXC(r) = EXC [n(r)]
δn(r)

and VH(r) = EH [n(r)]
δn(r)

We now return to the minimization of the

total energy functional and find out that using variational principle, when Equation 2.30
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is minimized, it leads to a self consistent Kohn-Sham equation using Kohn-Sham orbitals

[− ~2

2m
O2 + Vext(r) + VH(r) + VXC(r)]φi(r) = εiφi(r) (2.34)

All the terms in Equation 2.34 are known except for the VXC(r)] term. VH(r) +

VXC(r)]φi(r) is sometime referred to as VKS. Thus the Kohn-Sham equation is also

written as

[− ~2

2m
O2 + VKS(r)]φi(r) = εiφi(r) (2.35)

The most important point to remember here is that, the ground state charge density which

is obtained by solving the Kohn-Sham equation is the exact ground state charge density

of the system, even though the Kohn-Sham equation is written for the non-interacting

system. To get the ground state charge density, we need the ground state Kohn-Sham

wavefunction and to get this we need to solve the Kohn-Sham equation. To solve the

Kohn-Sham equation we need VH(r) which is the Hartree potential, but again this VH(r)

depends on the electron density and hence we need to know the electron density. So in

order to solve this loop problem, charge density is calculated in an iterative way in the

following way. (At this point we will not worry about the form of VXC(r)] . We will

discuss it in the next section).

Step 1 : An initial trail electron density density, n(r) is defined.

Step 2 : Using the trial electron density, Kohn-Sham equations are solved to find the

single particle wave function φi.

Step 3 : From the Kohn-Sham single particle wave function obtained above, electron

density is calculated nKS(r) = 2
∑

i φ
?
i (r)φi(r).

Step 4 : The calculated electron density in the previous step, nKS(r) is compared with

the initial trial electron density, n(r). If the two densities satisfy some convergence criteria

and are consistent, then the electron density thus calculated is the ground state electron

density otherwise we go to step 2 with the updated electron density nKS(r).

This has been pictorially shown in Figure 2.1
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Figure 2.1: Flowchart of DFT

2.3.3 Approximations For Exchange Correlation Functional

As said earlier, we have so far not discussed the functional form of VKS(r). In this section,

we discuss the various functional forms of EXC [n(r)], which lead to the calculation of

VKS(r).

Local Density Approximation(LDA): Local density approximation(LDA) was pro-

posed by Hohenberg and Kohn in their original DFT paper [11]. In this approximation,

the exchange-correlation energy of a system at each point in space is approximated by

the exchange-correlation energy of a homogeneous electron gas(HEG) of the same density

observed at that point. This form of the exchange correlation energy is precisely known

only for the homogeneous electron gas. LDA uses the local density, and the exchange-

correlation energy functional is written as,

ELDA
XC [n(r)] =

∫
n(r)ε

HEG

XC
(r)d3r) (2.36)
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here ε
HEG

XC
(r), is the exchange-correlation energy density and it corresponds to a homoge-

neous electron gas of density n(r). ε
HEG

XC
(r) can be separated into exchange and correlation

parts as,

ε
HEG

XC
(r) = ε

HEG

X
(r) + ε

HEG

C
(r). (2.37)

Dirac derived this exchange part ε
HEG

X
(r) analytically [14]. But the analytic expression

for the other term ε
HEG

C
is known only in the limits of high [15,16] and low densities [17].

Generalized Gradient Approximation (GGA) :

The major drawback of LDA approximation is that it is not appropriate in a non uniform

density which results from the formation of spatially directed bonds. The next approxi-

mation considered to take care of this drawback is the generalized gradient approximation

(GGA), where the exchange-correlation energy is expressed in terms of both the local den-

sity and the gradient of the electron density. The exchange-correlation functional under

GGA approximation can be expressed as,

EGGA
XC [n(r)] =

∫
n(r)ε

HEG

XC
[n(r), |∇n(r)|]d3r (2.38)

Perdew and co-workers initiated the most important work towards development of GGA

functional [18]. Ever since many improvement have been done. Some popular form of

GGA functionals are Perdew and Wang [19], Becke-Lee-Yang-Par (B-LYP) [20–22] and

Burke and Enzerhof (PBE) [23] functionals.

Hybrid Functionals :

Hybrid functionals is another approximation for the exchange-correlation functional which

has contributions from the exact (hartree-fock) energy with a GGA functional. It has a

general form as

EHybrid
XC = α(EHF

X − EGGA
X ) + EGGA

XC (2.39)

here EHF
X is the hartree-fock exchange energy and is a non-local quantity. One needs

to know the value of φi at all points in order to evaluate it at a particular point of

the configuration space. The amount of exact-exchange mixing is determined by the

coefficient α and is fitted semi empirically. One such functional is HSE, named after

J. Heyd, G. E. Scuseria, and M. Ernzerhof [24]. These functionals are computationally

expensive because of their non-local nature but at the same time they are expected to be
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more accurate in the case of strongly correlated electron systems because of their large

self-interaction correlation.

2.4 Numerical Approximations for DFT Calculations

We use DFT to calculate the electronic structure of materials which have many electrons

using Kohn-Sham equations. Analytically it is not possible to solve this problem, however,

we can solve it mathematically iteratively, using some approximations. As a result of these

approximations, errors enter into the solution. Therefore it is important to work towards

getting a well converged solution. In this section we will briefly discuss some of the

numerical approximations used in DFT calculations.

2.4.1 Plane Wave Basis and Cut-off Energy

We need an appropriate basis set in order to solve the Kohn-Sham equations. We calculate

electronic structure of crystals which have periodic arrangement of atoms as a result, we

can write single particle electronic states in a periodic system for the non-interacting

electrons as follows in terms of Blöch states [25].

φk(r) = eik·ruk(r) (2.40)

here, uk(r) is the lattice periodicity given as uk(r+n1a1 +n2a2 +n3a3) = uk(r), where a1,

a2 and a3 are the lattice vectors of the material and n1, n2, n3 are integers. Now Blöch’s

theorem allows Fourier expansion of uk(r) (because of its periodicity) in terms of plane

waves as

uk(r) =
∑
G

CGe
iG·r (2.41)

G here is the reciprocal lattice vector and is defined in terms of reciprocal unit lattice

vectors as G = m1b1 + m2b2 + m3b3. Now using the definition of uk(r) from Equation

2.41 into the Equation 2.40 we get

φk(r) =
∑
G

CG+ke
i(G+k)·r (2.42)

Equation 2.42 represent infinite sum of plane waves whose kinetic energy is given as

E = ~2
2m
|k + G|2. For practical purpose therefore, we need to truncate the infinite sum
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given in Equation 2.42. We do this by defining a cut off for the kinetic energy

Ecut =
~2

2m
G2
cut (2.43)

Now once we have defined a cut off kinetic energy, only those plane wave whose kinetic

energies are lower than the defined cut off energy are included in the basis set. One can

minimize the error due to this approximation by increasing the cut off kinetic energy till

the total energy calculated using that cut off does not show significant variations.

2.4.2 K-Space Integrations

While performing DFT calculations, we evaluate k-space integrals with the form [26].

g =
Vcell

(2π)3

∫
BZ

g(k)dk (2.44)

Here volume of the unit cell of the material is given as Vcell, we evaluate the value of

g(k) within the Brillouin zone at some finite k-points with appropriate weights in order

to evaluate the integral given in the Equation 2.44, numerically. It is important to choose

the k-points properly so that the total energy of the system does not depend on the

selection of k-point. One way to do this is to increase the k-point grid and calculate the

total energy of the system until the changes in the total energy is insignificant.

2.4.3 Pseudopotential and Frozen core approximation

The electrons in an atom can be divided into two categories, the core electrons which are

tightly bound to the nucleus and the valence electrons which are free to move. The kinetic

energy of the core electrons are higher than that of the valence electrons and also their

wavefunction show very rapid oscillations. In a solid however the physical and chemical

properties are mainly decided by the valence electrons and the core electrons do not take

part in bond formation. As the kinetic energy of the core electrons are higher, we need

a very large cut off energy to represent them and this is computationally very expensive.

So one approach to solve this problem can be to approximate the core electrons which

replicates its effect in a way that the physical and chemical properties of the material

remain unaltered.

One popular approach to handle this is the pseudopotential approximation. In this ap-

proximation, the core electron density is replaced by a smoothened function. This smooth

function is chosen such that the properties of the system are best described. This is also
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called the frozen core approximation. If we represent the core and the valence electrons

by |ψc〉 and |ψv〉 respectively, then a smooth valence function can be constructed which

are orthogonal to the core states as follows

|φv〉 = |ψv〉+
∑
c

αcψ
c(r) (2.45)

here the orthogonality condition αc = 〈ψc|φv〉 can be used to determine αc. Now, the

Schrödinger equation gets modified as[
H +

∑
c

(εv − εc)|ψc〉〈ψc|

]
|φv〉 = εv|φv〉 (2.46)

hence a pseudo Hamiltonian is given as

HPH =

[
H +

∑
c

(εv − εc)|ψc〉〈ψc|

]
(2.47)

The eigenvalues of this Hamiltonian should be the same as the original Hamiltonian. The

potential (called pseudo-potential) corresponding to this is given as

V PP = V +
∑
c

(εv − εc)|ψc〉〈ψc| (2.48)

Here, the nuclear potential is represented by V . The second term in Equation 2.48 is a

correction term due to the repulsion of valence electrons by the core electrons. A schematic

illustration of pseudo potential approach is given in Figure 2.2

Figure 2.2: Core electrons in pseudo potential approach. Reproduced from [27]
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From the figure, we can see that beyond a cut off radius, the pseudo potential as well

as the pseudo wavefunction is identical to the all electron potential and the all electron

wavefunction respectively. The cut off radius is defined by a cut off energy. One of the

main point kept in mind while developing a pseudo-potential is to construct a pseudo

wavefunction which is as smooth as possible and yet should be able to produce accu-

rate results. Constant efforts are being made to generate pseudo-potentials which are

accurate as well as efficient. Generation of norm-conserving pseudo-potential is one such

example. In this method, the all-electron and pseudo-wave function agree beyond some

chosen radius (rc). Sometimes the pseudo-potentials generated using this method not

smoother than the all-electron one because of the criteria imposed by norm-conserving.

This difficulty was removed by the introduction of ultrasoft pseudo potentials (USPP)

by Vanderbilt in 1990 [28]. The norm-conserving criteria was relaxed for this pseudo-

potential. This method requires a very small planewave cut off and hence a very small

number of plane wave. The major drawback of using USPP is that their construction

requires a lot of empirical parameters. Another popular approach developed to overcome

the disadvantages of USPP is projector augmented-wave(PAW) method.

2.4.4 Projector Augmented-Wave(PAW) Method

PAW or Projector augmented plane wave method is a pseudo potential technique devel-

oped by Blöchl [29]. Kresse and Joubert later adapted this method for plane-wave cal-

culations [30]. This approximation is based on construction of all electron wave function

using which all the integrals are calculated. These integrals are calculated as a combi-

nation of smooth functions which extend throughout space as well as contributions from

localized muffin tin orbitals [31,32]. As a result, we have the total wavefunction which is a

combination of wavefunction of the valence states ψ̃vi (r) as well as a linear transformation

function which relates an all electron valence function ψvj (r) to ψ̃vi (r). This is given as

ψvj (r) = ψ̃vj (r) +
∑
i

(|φi〉 − ˜|φi〉)〈p̃i|φ̃i〉 (2.49)

In this equation, the atomic site R is represented by the index i. |p̃i〉 represents the

projector functions for localized pseudo partial wave. They satisfy the orthogonality

condition, 〈p̃i|φ̃j〉 = δi,j. In this formalism, the all electron charge density can be derived

from Equation 2.49 as

n(r) = ñ(r) + n1(r)− ñ1(r), (2.50)
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here,

ñ(r) =
∑
i

fi|ψ̃i(r)|2 (2.51)

n1(r) =
∑
i

fi
∑
j,k

〈ψ̃i|p̃j〉φj(r)φk(r)〈p̃k|ψ̃i〉 (2.52)

ñ1(r) =
∑
i

fi
∑
j,k

〈ψ̃i|p̃j〉φ̃j(r)φ̃k(r)〈p̃k|ψ̃i〉 (2.53)

In this expressions, fi’s are the occupancies of the eigenstates ψ̃i. ñ(r) is the pseudo-charge

density which is calculated from the pseudo-wavefunctions with plane wave basis. n1(r)

and ñ1(r) are the onsite charge densities localized within the augmented sphere around

each atom. The total energy of the system when calculated from these charge densities

can also be divided into three parts.

2.5 Van der Waals Correction: DFT-D2 Method

In order to capture the long range non-local interactions such as van der Waals (vdW)

interactions, there are various estimations made in DFT because the standard exchange

correlation functionals used do not describe these interactions in DFT. One such approach

is DFT-D2, which was proposed by Grimme [22]. This approach is also called DFT-D.

In this method a semi-empirical term which is attractive in nature is added to the total

energy calculated by DFT. This term takes into consideration the long range dispersive

forces and hence we call it Edisp. The total energy thus becomes

EDFT−D2 = EDFT + Edisp (2.54)

Edisp is given as

Edisp = −s6
Nat−1∑
i=1

Nat∑
j=i+1

Cij
6

R6
ij

fdamp (Rij) (2.55)

The number of atoms in the system here is given here by Nat. s6 is a scaling factor and

it depends on the exchange correlation functional used. Rij is the distance between the

atoms i and j. Cij
6 are the dispersion coefficients between the i− th and the j− th atom.

The singularity at Rij can be avoided by the damping factor fdamp (Rij) and is given as

fdamp (Rij) =
1

e−d(Ri,j/R
i,j
0 −1)

(2.56)
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For a pair of atoms, Ri,j
0 is the cut off radius. It is given as the average of their van

der Waal radii [34]. d is a damping constant and it determines the steepness of the

function [22].

2.6 Tight Binding Method

Tight binding method is an extension of Blöch’s linear combination of atomic orbital

(LCAO) [25]. It is a simple approach for calculation of bandstructure of solids. The

tight binding method rests on the assumption that the wavefunctions can be expanded

in terms of atomic orbitals which are assumed to be tightly binded to their sites. In

order to understand this method let us consider a set of atomic wavefunctions φl(r− ti)

in a primitive cell. Here φi(r) represents the atomic state of the i − th atom. Also here

different types of orbitals are labeled using the index l. Now using Blöch’s theorem, we

construct a basis set for a periodic lattice as

Φk,l,i(r) =
1√
N

∑
R′

eik.R
′
φl(r− ti −R′) (2.57)

here the total number of unit cell is given by N and R′ represents the translation vectors.

Now using these basis functions we write the single particle eigenstates as follows

ψnk (r) =
∑
i,j

ck,l,iΦk,l,i(r) (2.58)

In the above equation the coefficients ck,l,i can be evaluated by the assumption that ψnk (r)

are solutions of the single particle Schrödinger’s equations

HSPψnk (r) = εkψ
n
k(r), (2.59)∑

i,l

{
〈Φk,m,j|HSP |Φk,m,j〉 − εk〈Φk,m,j|Φk,m,j〉

}
cnk,l,i = 0 (2.60)

considering orthogonality condition

〈ψnk (r)|ψn
k′(r)〉 = δ(k− k′) (2.61)
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The values of k and k′ are restricted to the first Brillouin zone. In order to solve this, we

need to solve the integral in the above equation. This can be done as follows

〈Φk,l,i|Φk,l,i〉 =
1

N

∑
R′,R′′

eik·(R
′−R′′)〈φm(r− tj −R′′)|φl(r− ti −R′)〉 (2.62)

=
1

N

∑
R,R′

eik·R〈φm(r− tj)|φl(r− ti −R)〉

=
∑
R

eik·R〈φm(r− tj)|φl(r− ti −R)〉

(2.63)

In the Equation 2.63, the bracket term is the overlap integral of the atomic orbitals on

the neighboring sites. We than calculate the expectation value using these basis set as

〈Φk,m,j|H|Φk,l,i〉 =
∑
R

eik·R〈φm(r− tj)|H|φl(r− ti −R)〉 (2.64)

The Orthogonality condition

(〈φm(r− tj)|φl(r− ti −R)〉 = δl,mδi,jδ(R)) should be used to get the solution. These

integrals are very difficult to compute. For certain periodic lattices they can be however

parametrized in terms of Slater-Koster parameters [35].

In this thesis we set up the tight binding hamiltonian for a system at various k points in

the Brillouin zone using an initial guess value for the Slater-Koster parameters and the

on site energies. After that a least squared error minimization fitting was done to fit the

eigenvalues obtained from ab-initio calculation at those k points. Using this process we

obtain the values for the Slater-Koster parameters as well as the on site energies.
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Chapter 3

Effect Of Spin Orbit Coupling On

Electronic Structure Of Transition

Metal Dichalcogenides

3.1 Introduction

In recent years the isolation of graphene [1, 2] has resulted in an avalanche of research in

two dimensional materials because of their potential application in electronic devices [3,4].

However, the absence of a bandgap has shifted the focus onto other materials like tran-

sition metal dichalcogenides [5–8]. These are materials with a direct bandgap at the

monolayer limit [9, 10]. As the band extrema are at K point of the two dimensional

Brillouin zone, there has been a lot of interest in using the valley index for low energy

carriers [11, 12]. The large separation in momentum space of the degenerate valleys is

expected to protect the index against scattering. Additionally, the large spin-orbit inter-

actions associated with the transition metal atom brings about a large spin splitting of the

valence band extremum at K point. This allows a labeling of the levels with additionally

the spin index. While spin-orbit interactions bring about a large spin-splitting at the K

point, they cannot however bring about magnetic ordering. This would then imply that

one has an equivalent but opposite spin-splitting at -K point compared to that found at K

point, thereby bringing about a coupling between the spin and valley degrees of freedom

in these materials with a lot of interesting consequences [13, 14]. We examined the spin

splitting of the valence band maximum (VBM) in MoS2, MoSe2 and MoTe2 monolayer

53



54
Chapter 3 Effect Of Spin Orbit Coupling On Electronic Structure Of Transition Metal

Dichalcogenides

and found that as the size of the anion increases, the spin-splitting increases. We capture

and explain this using a tight binding model.

However, as we build the structure layer by layer, using the stacking which is seen in the

bulk (2H stacking), one finds that for the bilayers as well as for instances where one has

an even number of layers, the structure has inversion symmetry. This leads to a zero spin

splitting. Additionally, with an increase in the number of layers, one finds that the valence

band maximum shifts away from K to Γ [15]. This arises because the out of plane orbitals

contribute at Γ. As each additional layer is added, these orbitals interact with those in

the next layer leading to shifts in the position of the highest occupied band at Γ such

that it becomes the valence band maximum. However, at the few layers limit one finds

that the growth techniques used don’t always ensure the bulk type of stacking. Focusing

on the bilayers, one finds that in some instances one has situations where the top layer

is rotated with respect to the bottom layer [16]. This could then lead to various types of

stacking seen locally, and consequently, even for the bilayer, one would have a situation

where inversion symmetry is broken. The immediate question that followed was whether

the slightest rotation of the top layer with respect to the bottom layer would allow us to

explore spin valley physics in bilayers, with the zero spin splitting case corresponding to

just one point of rotation.

Bilayers of MoSe2 with those rotation angles which lead to smaller unit cells, were studied.

The valence band maximum of these rotated bilayers was found to be at K of the supercell

denoted as (K). Contrary to what was speculated earlier, the spin splitting of the VBM

did not emerge for the slightest angle of rotation from the configuration where we had

inversion symmetry. It was observed that for certain angles of rotation, which were

otherwise arbitrary, there is a net spin-splitting of the VBM at K whereas for other angles

this net spin-splitting vanishes. Our results suggest that there is an alternate mechanism

at work which can lead to a vanishing spin splitting at arbitrary angles of rotation. This is

operational even when there is no inversion symmetry in the lattice, indicating a distinct

origin. Additionally we find that for every angle of rotation θ that we find a spin splitting,

there is no spin splitting for 60 − θ. As the choice of rotation angles was arbitrary, this

relation emerges from the hexagonal symmetry of the lattice.

3.2 Methodology

The bandstructure was calculated within a projector augmented-wave method implemen-

tation of density function theory (DFT) within the Vienna Ab-initio Simulation Package

(VASP) [25, 26]. The experimental crystal structure of MoS2, MoSe2 and MoTe2 were
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taken, with the lattice constant of 3.160 Å Å [19]3.289 Å [20]and 3.519 Å [21]respectively

additionally, in each of the layered structures a vacuum of 20 Å was added to minimize

the interaction between images in the periodic supercell imposed by the method we use.

The lattice parameters were kept fixed at the experimental values while the internal po-

sitions were optimized in each case. In bilayer MoSe2, in addition to the optimization

of internal positions, we included the optimization of the interlayer separation. This

was done including van der Waals interactions implemented using the DFT-D2 method of

Grimme [22,23]. The electronic structure was solved self consistently using a k-point mesh

of 12x12x1 [24, 25]. Twisted bilayers were generated such that the top layer is rotated

counterclockwise with respect to the bottom layer. We started by taking the primitive

cell for both the unrotated and rotated layers for a particular angle of rotation. We then

found all the translation vectors in both cases and found the set of lattice vectors where

the supercell of the rotated layer coincides with that for the unrotated layer. Only those

twist angles were considered which had reasonable sized commensurate supercells. For

the supercells, we appropriately scaled the k-mesh so that the same density of points was

sampled in each case. Perdew Burke-Ernzerhof potentials were used for the exchange

correlation functional [28, 29]. We have extracted the spectral weight of primitive cell K

point contributing to the supercell VBM [28]. This was done as follows

Invoking Blöch’s theorem, the supercell eigenvector for the k-point K and band number

m, |Km〉 can be written as

|Km〉 = uKm(r)eiKr (3.1)

Here uKm is the periodic part of the wavefunction. This can be expanded in terms of its

Fourier coefficients as

|Km〉 = [
∑
G

CKm(G)eiGr]eiKr (3.2)

We use the open source software WaveTrans to extract these expansion coefficients [29].

The primitive cell k-point k and band number n has a contribution at |Km〉 which is

given as

〈kn|Km〉2 = |CKm(g + k−K)|2 (3.3)
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where only those coefficients given by the relation G = g + k−K contribute. Here g are

the reciprocal lattice vectors of the primitive cells.

This method was first tested on a simple system GaAs. For this as the primitive cell

we took conventional fcc GaAs unit cell and calculated the bandstructure along Γ to X

direction. This is shown in Figure 3.1a. We then created a supercell of GaAs 2x1x1 and

calculated its bandstructure along the primitive cell Γ to X direction, which is shown

in Figure 3.1b. The unfolded bandstructure using the method described above with the

thickness of the bands proportional to the spectral weight from the respective primitive

cell k-point is shown in Figure 3.1c.
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Figure 3.1: a)Ab-initio bandstructure along the Γ to X direction for GaAs conventional

cell. b) The supercell bandstructure along Γ to X direction c) The unfolded bandstruc-

ture of the 2x1x1 supercell of GaAs along Γ to X direction with the spectral weights

proportional to band thickness

For further analysis, a tight binding model with Mo s, p, d and S/Se/Te s, p, d states was

set up. The tight binding parameters were determined by least square error minimization

of the ab-initio bandstructure within the tight binding model. The spin-orbit interaction

was incorporated as HSO = λ
−→
L ·
−→
S , where λ is the spin-orbit coupling constant,

−→
L is the

orbital angular momentum and
−→
S is the spin angular momentum. Spin-Orbit constant



3.3 Results and discussion 57

Compound Spin-splitting of VBM (meV)

MoS2 147
MoSe2 187
MoTe2 214

Table 3.1: The magnitude of the spin-splitting of VBM at K for MoS2, MoSe2 and MoTe2
monolayer.

(λ) for Mo, S, Se and Te were taken to be 0.119, 0.045, 0.214 and 0.472 respectively as

obtained from atomic hartree-fock calculations.

3.3 Results and discussion

Monolayer MoSe2 consists of a layer of Mo atoms sandwiched between two layers of Se

atoms. In its bulk form the stacking found in MoSe2, is referred to as 2H stacking. In this

kind of stacking, the Mo atoms in one layer lie above the Se atoms in the layer beneath.

However the MoSe2 motif in each layer is rotated by an angle of 60◦ with respect to the

adjacent layers above and below it. These layers in the optimized structure are found

to be at a distance of 3.21 Å, while the in-plane bondlengths are 2.53 Å. This leads to

the nature of the bonding between layers being discussed as arising from van der Waals

interactions while that within the layer arise from covalent interactions. Monolayer MoSe2

is a direct bandgap material, with the valence band maximum (VBM) and the conduction

band minimum (CBM) both at the K point of the Brillouin zone. The highest occupied

band at Γ, however, is 0.24 eV below. On analyzing the character of the valence band

at these high symmetry points, one finds that the VBM at K is contributed by Mo dxy

and dx2−y2 orbitals, where ml = ±2. However, the highest occupied band at Γ is mainly

contributed by Mo dz2 orbitals, where ml = 0. As a result, on introduction of spin-

orbit interactions, which has the form λ
−→
L ·
−→
S , the VBM at K-point gets perturbed and

splits into two bands with opposite spin whereas the highest occupied band at Γ remains

unaffected and hence has no spin-splitting. The spin-splitting of the VBM at K-point is

187 meV (Figure 3.2).

At this point we examined the spin-splitting of VBM in other members of transition metal

dichalcogenides MoS2 and MoTe2. The results are given in Table 3.1. It can be noticed

that as the size of the anion increases in these materials, the spin splitting increases as

well.

We wanted to understand the reason for increasing the spin-splitting of VBM as the size of

the anion increases. In order to so do we went to a tight binding model with Mo s, p, d and
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Figure 3.2: Ab-initio bandstructure of monolayer MoSe2 calculated along various symme-
try directions with (dashed red line) and without (solid black line) spin-orbit interactions.
The inset shows an expanded view with the magnitude of the spin splitting indicated.

S/Se/Te s, p, d as the basis states. The tight binding parameters were then determined by

least square error minimization of the ab-initio bandstructure within this tight binding

model for MoS2, MoSe2 and MoTe2. Figures 3.3, 3.4 and 3.5 shows a comparison of

the ab-initio bandstructure and the tight binding bandstructure for monolayer of MoS2,

MoSe2 and MoTe2 respectively. The tight binding parameters obtained from the fit are

listed in Tables 3.2 3.3 and 3.4 for MoS2, MoSe2 and MoTe2 respectively.

We then went on to examine the character of the VBM at K point in each of these

compounds within our model. We find that the K point in each of these compounds

are hybridized and are composed of Mo dxy and dx2−y2 orbitals and the anion px and

py orbitals. So we incorporated spin-orbit interactions for d orbitals of Mo as well as p

orbitals of the anion. This model of ours was able to capture the spin splitting of these

materials. Figures 3.6, 3.7 and 3.8 shows the bandstructure obtained using our tight

binding model with spin-orbit coupling incorporated along various symmetry directions

for MoS2, MoSe2 and MoTe2 respectively. The values for spin-splitting of the VBM

obtained using this model have been summarized in Table 3.5 where the magnitude of

spin-splitting is given in meV for MoS2, MoSe2 and MoTe2 along with the respective

values obtained from ab-initio calculation.
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Figure 3.3: Comparison of ab-initio band dispersions (solid black line) for monolayer MoS2

and the fitted tight binding bands (red dashed line), using a basis consisting of Mo s, p,
d and S s, p, d states, calculated along various symmetry directions.
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Figure 3.4: Comparison of ab-initio band dispersions (solid black line) for monolayer
MoSe2 and the fitted tight binding bands (red dashed line), using a basis consisting of
Mo s, p, d and Se s, p, d states, calculated along various symmetry directions.
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Figure 3.5: Comparison of ab-initio band dispersions (solid blck line) for monolayer MoTe2
and the fitted tight binding bands (red dashed line), using a basis consisting of Mo s, p,
d and Te s, p, d states, calculated along various symmetry directions.

Es Epx Epy Epz Edxy Edyz Edzx Ex2−y2 Ez2

Mo 4.41 12.13 12.13 12.13 1.46 1.46 1.70 1.70 1.01
S −7.63 −1.15 −1.15 −1.79 11.82 11.82 11.82 11.82 11.82

E(Mo,Mo) E(Mo, Se) E(Se, Se)
ssσ −0.94 −0.83 −0.01
spσ 0.48 1.23 0.29
sdσ −0.59 −0.36 −0.28
ppσ 0.00 1.12 0.86
ppπ 0.00 −0.68 −0.13
pdσ −1.41 −1.01 −0.24
pdπ 0.01 3.12 0.32
ddσ −0.62 −2.36 0.00
ddπ 0.10 1.11 1.30
ddδ −0.00 −0.38 −0.47
psσ −0.48 −3.13 −0.29
dsσ −0.59 −2.25 −0.28
dpσ 1.41 2.30 0.24
dpπ −0.01 −0.78 −0.32

Table 3.2: Parameters obtained from least-squared-error minimization fitting of the ab-
initio band structure onto a tight binding model using s, p, d orbitals of Mo and S for
monolayer MoS2
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Es Epx Epy Epz Edxy Edyz Edzx Ex2−y2 Ez2

Mo 4.35 12.32 12.32 12.32 1.48 1.92 1.92 1.48 1.06
Se −7.42 −0.99 −0.99 −1.67 11.67 11.67 11.67 11.67 11.67

E(Mo,Mo) E(Mo, Se) E(Se, Se)
ssσ −0.70 −0.70 −0.07
spσ 0.42 1.29 0.29
sdσ −0.33 −0.01 −0.20
ppσ 0.21 1.06 0.92
ppπ −0.38 −0.62 −0.13
pdσ −0.99 −1.76 −0.23
pdπ 0.01 3.37 0.40
ddσ −0.44 −2.53 0.00
ddπ 0.07 1.23 1.14
ddδ 0.00 −0.36 −0.76
psσ −0.42 −3.63 −0.29
dsσ −0.33 −2.09 −0.20
dpσ 0.99 2.20 0.23
dpπ −0.01 −0.72 −0.40

Table 3.3: Parameters obtained from least-squared-error minimization fitting of the ab-
initio band structure onto a tight binding model using s, p, d orbitals of Mo and Se for
monolayer MoSe2
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Figure 3.6: The bandstructure of MoS2 monolayer using tight-binding model with spin-
orbit coupling included, calculated along various symmetry directions.
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Es Epx Epy Epz Edxy Edyz Edzx Ex2−y2 Ez2

Mo 5.70 13.74 13.74 13.74 0.98 2.26 2.26 0.98 0.87
Te −10.65 −0.55 −0.55 −1.65 11.01 11.01 11.01 11.01 11.01

E(Mo,Mo) E(Mo, Se) E(Se, Se)
ssσ −0.55 −0.41 −0.55
spσ 0.74 1.14 0.49
sdσ −0.12 −0.01 −0.27
ppσ 0.00 1.31 0.82
ppπ 0.00 −0.35 −0.09
pdσ −0.61 −1.41 −0.16
pdπ 0.01 2.85 0.44
ddσ −0.35 −2.91 −0.00
ddπ 0.013 1.16 0.30
ddδ −0.05 −0.49 −3.04
psσ −0.74 −5.00 −0.49
dsσ −0.12 −2.60 −0.27
dpσ 0.61 1.92 0.16
dpπ −0.01 −0.60 −0.44

Table 3.4: Parameters obtained from least-squared-error minimization fitting of the ab-
initio band structure onto a tight binding model using s, p, d orbitals of Mo and Te for
monolayer MoTe2
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Figure 3.7: The bandstructure of MoSe2 monolayer using tight-binding model with spin-
orbit coupling included, calculated along various symmetry directions.
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Figure 3.8: The bandstructure of MoTe2 monolayer using tight-binding model with spin-
orbit coupling included, calculated along various symmetry directions.

Compound Spin-splitting of VBM (meV) (Ab-initio) Spin-splitting of VBM (meV) (TB)

MoS2 147 145
MoSe2 187 183
MoTe2 214 241

Table 3.5: Comparision of the spin-splitting of VBM for MoS2, MoSe2 and MoTe2 using
ab-initio and tight-binding model.
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As we go to the bilayer, considering the bulk stacking (2H) of the layers, the valence band

maximum, which was at K point in the monolayer moves to Γ point. The conduction band

minimum which was also at K point is now at T point, which is a non high symmetry

point in the Γ to K direction as shown in Figure 3.9 for MoSe2. This shifting of VBM

and CBM on introduction of another layer can be understood by looking at the character

of the bands at these points. As mentioned earlier, the VBM and CBM at K point in

the monolayer are contributed by Mo dxy and dx2−y2 orbitals. These are in-plane orbitals

and hence are weakly affected by the introduction of another layer above it. The VBM

at Γ and CBM at T are however contributed by the out of plane Mo dz2 orbitals. These

orbitals interact with those on the atoms in the layer above and hence are perturbed by

the presence of the next layer. Thus this of direct bandgap in monolayer to an indirect

bandgap in multilayers can be attributed to interlayer interactions. Interlayer interactions

in the bilayers also lead to a splitting of the VBM, at Γ (∆) of 0.64 eV and at the K point of

0.09 eV. Unlike the monolayer structure, the 2H bilayer structure has a point of inversion

symmetry. As a result when we introduce spin-orbit interactions, we find that there is

no effective spin-splitting of the highest occupied band at K point. However, on closer

examination we find that the highest occupied band at K point has contributions from

the up spin states belonging to the Mo atom from the upper layer as well as down spin

states belonging to the Mo atom from the lower layer. Its spin-split counterpart which

is the second highest occupied band at K has contributions from the down spin states of

the Mo atom of the top layer and up spin states of the Mo atom from the lower layer.

This has been shown in Figure 3.9.

Alternately, one can project the wavefunction associated with the highest occupied band

at K on to each layer and we find a spin polarization associated with each layer. In order

to preserve inversion symmetry, the splitting in one layer is opposite to that in the other,

resulting in a net zero spin splitting. So the question we asked was, whether the slightest

deviation from a structure with an inversion symmetry point would restore spin splitting

in the bilayers? In order to investigate this, we considered various angles of rotation

so that we had small unit cells for which DFT calculations could be performed easily.

Starting from the unrotated structure, where Mo and Se atoms in the top layer sit on top

of the Mo and Se atoms in the layer beneath and the angle of rotation is 0◦ (denoted as

AA), we considered 18 different angles, upto a rotation of 60◦ (denoted as AB) as angles

beyond this can be mapped back to this range. The choice of angle was determined by

our computational resources. This constrained us to consider only those angles where we

got reasonable sized supercells. The angles considered by us and the number of atoms in

the respective supercells are given in Table 3.6. Structure of one of the twisted bilayers

with angle of rotation 38.2◦ is shown in Figure 3.10.
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Figure 3.9: The ab-initio bandstructure with (dashed red line) and without (solid black
line) spin-orbit interactions along Γ to K direction for 2H stacking MoSe2 (structure
shown schematically). The contributions from Mo atoms of each layer for the two highest
occupied bands at K point after inclusion of spin-orbit interactions is also given.

Angle (θ) Angle (60− θ) No. of Atoms

0(AA) 60(AB) 6
10.40 49.60 546
14.10 45.90 1194
15.18 44.82 258
17.90 42.10 186
27.80 32.20 78
34.00 26.00 474
38.20 21.80 42
46.80 13.20 114

Table 3.6: The angle of rotation and the corresponding number of atoms in the supercell
for different twisted MoSe2 bilayers.
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Figure 3.10: Structure of one of the twisted bilayers with angle of rotation 38.2◦. Mo1 is
the from the bottom layer wheras Mo2 represents Mo from the top layer.

We then went on to examine the electronic structure of each of these rotated structures.

The calculated bandstructure with spin-orbit interactions included, for one of the rotation

angles (38.2◦) is shown in Figure 3.11 along Γ to K direction of the supercell. One finds

the VBM to be at K. A similar result is found for the other twist angles considered by

us.

In order to get meaningful information from a supercell bandstructure, we need to unfold

it to the primitive cell Brillouin zone and to do so we first used the Brillouin zone of the

supercell and found the eigenvalues for all the points which unfolded on to the Γ to K

direction of the primitive cell. For simplicity it was done without spin-orbit interactions

included. This is shown in Figure 3.12 for 38.2◦.

Now we need the spectral weight of the supercell k-point at any primitive cell k-point

to determine if it contributes or not. This is shown in Figure 3.13 with the thickness of

the bands proportional to their contributions. This analysis establishes that the highest

occupied band at K has maximum contribution from the primitive cell K point. Although

for simplicity we have carried out the analysis presented in Figure 3.12 and 3.13 in the

absence of spin-orbit interactions. However only for VBM at K point, the analysis has

been carried out for the wavefunction obtained after including spin-orbit interactions for

all angles. (The implications of this analysis is discussed later). Now, comparison of the

bandstructure presented in Figure 3.13 with in the 2H bandstructure, we calculated the

2H bilayer MoSe2 bandstructure at the interlayer separation equal to that of the twisted
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Figure 3.11: Ab-initio bandstructure with spin-orbit interactions included for MoSe2 bi-
layer at a twist angle of 38.2◦ along the Γ to K direction.
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Figure 3.12: The supercell bandstructure without spin-orbit coupling included along Γ to
K direction of the primitive cell.
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Figure 3.13: The unfolded bandstructure without spin-orbit coupling included along Γ to
K direction of the primitive cell with spectral weights proportional to band thickness.

bilayer (3.44 Å ). This bandstructure with (dashed line) and without (solid line) has been

shown in Figure 3.14 along various symmetry directions.

From Figure 3.14, we can see that even for the 2H stacking the VBM has shifted from Γ

to K. This happens because of the decrease in interlayer interactions as the separation is

increased. Comparing the bandstructures for Figures 3.14 and 3.13, we find remarkable

similarities. The splitting of the highest occupied band at Γ (∆) is found to be 0.52 eV

in the twisted bilayer. This is related to the interaction between the layers and atleast

at this angle it seems similar to what we have for 2H structure (0.50 eV) at the same

interlayer separation. A similar analysis has been done for a rotation angle of 15.18◦,

where ∆ was found to be 0.53 eV. This has been shown in Figure 3.15.

As the highest occupied band at K has the spin-splitting associated with it, shifting of the

VBM to K allows us to explore the consequences of the spin valley physics in the bilayers

also. To see if this is a general feature for all rotated angles, we studied the electronic

structure of all the 18 rotated structures. In each case we had the VBM at K. For the

unrotated bilayer (rotation angle=0◦), there is no inversion symmetry in the structure.

The bands associated with the two monolayers, split in the same direction giving rise to

a net splitting of 147 meV [30]. Whereas in the 60◦ rotated bilayer, where the structure

has inversion symmetry similar to that of 2H stacking, bands associated with both the

monolayers, split in opposite directions resulting in a net zero spin splitting. The angles
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Figure 3.14: The ab-initio bandstructure with (dashed line) and without (solid line)
spin-orbit interactions along Γ to K direction for MoSe2 bilayer with 2H stacking at the
interlayer separation equal to that of the twisted bilayers.
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Figure 3.15: The unfolded bandstructure without spin-orbit coupling included along Γ to
K direction of the primitive cell for MoSe2 bilayer at a twist angle of 15.8◦ with spectral
weights proportional to band thickness.
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Angle (θ) Spin-Splitting Angle (60-θ) Spin-splitting

0(AA) 147 60(AB) NO spin-splitting
10.40 183 49.60 NO spin-splitting
14.10 183 45.90 NO spin-splitting
15.18 183 44.82 NO spin-splitting
17.90 183 42.10 NO spin-splitting
27.80 183 32.20 NO spin-splitting
34.00 180 26.00 NO spin-splitting
38.20 179 21.80 NO spin-splitting
46.80 180 13.20 NO spin-splitting

Table 3.7: The angle of rotation and the corresponding spin-splitting of the VBM. The
labels for specific choice of angles has also been given.

in between these two extreme cases, however show some interesting trends. The results

have been summarized in Table 3.7.

It can be seen that for some angles of rotation (represented as θ in Table 3.7), the VBM has

a spin splitting but angles which are 60− θ do not show a net spin-splitting of the VBM.

In order to understand this we went on to examine the primitive cell k-point contributions

to the VBM of the supercell. From our analysis we found that the cases where there is

a spin-splitting, VBM at K is contributed by K point of both the unrotated and rotated

primitive cells, whereas the angles where there is no net spin-splitting, the contribution

is from K and -K of the unrotated and rotated primitive cells respectively. In order to

understand this we tried to examine the simplest case of 0◦ (θ) and 60◦ (60− θ). In case

of 0◦, the K point from the Brillouin zone of both the layers sit on top of each other

whereas when the top layer is rotated by an angle of 60◦ the -K point from the top layer

sits on top of the K point of the bottom layer. This explains the contributions to the

highest occupied band at K for the bilayer in these two cases. However, when we go to

other angles the case is not that simple as large unit cells are involved.

In order to understand the pattern of spin-splitting in these intermediate angles, we have

to understand the structure of these supercell carefully and compare it with both the

primitive cell structures (unrotated as well as rotated). We also need to understand the

relation between both the primitive cell Brillouin zones and the supercell Brillouin zone.

Let ~a1 and ~a2 be the unrotated primitive cell lattice vectors also ~a
′
1 and ~a

′
2 be the rotated

primitive cell lattice vectors. Also let ~A1 and ~A2 be the supercell lattice vectors. Now

let us further assume the unrotated primitive cell reciprocal lattice vectors be ~b1 and
~b2, rotated primitive cell reciprocal lattice vectors be ~b

′
1 and ~b

′
2 and supercell reciprocal

lattice vectors be ~B1 and ~B2 respectively. Now if we look at the angles made by each of the

primitive cell lattice vectors with the supercell lattice vectors we have by definition α1,1,
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θ ~A1 − ~a1 ~A1 − ~a
′
1

~A1 − ~a2 ~A1 − ~a
′
1

~A2 − ~a1 ~A2 − ~a
′
1

~A2 − ~a2 ~A2 − ~a
′
2

α1,1 α1,1′ α1,2 α1,2′ α2,1 α2,1′ α2,2 α2,2′

10.40 5.21 5.19 114.79 125.19 65.21 54.81 54.79 65.19
14.10 7.05 7.05 112.95 127.05 67.05 52.95 52.95 67.05
15.18 7.59 7.59 112.41 127.59 67.59 52.41 52.41 67.59
17.90 8.95 8.95 111.05 128.95 68.95 51.05 51.05 68.95
27.80 13.90 13.90 106.10 133.90 73.90 46.10 46.10 73.90
34.00 17.00 17.00 103.00 137.00 77.00 43.00 43.00 77.00
38.20 19.11 19.09 40.89 79.09 79.11 40.91 100.89 139.09
46.80 23.41 23.39 96.59 143.39 83.41 36.61 36.59 83.39

60-θ ~A1 − ~a1 ~A1 − ~a
′
1

~A1 − ~a2 ~A1 − ~a
′
1

~A2 − ~a1 ~A2 − ~a
′
1

~A2 − ~a2 ~A2 − ~a
′
2

α1,1 α1,1′ α1,2 α1,2′ α2,1 α2,1′ α2,2 α2,2′

49.60 5.21 54.81 125.21 174.81 54.79 5.19 65.21 114.81
45.90 52.95 7.05 67.05 112.95 112.95 67.05 7.05 52.95
44.82 52.41 7.59 67.59 112.41 112.41 67.59 7.59 52.41
42.10 8.95 51.05 128.95 171.05 111.05 68.95 8.95 51.05
32.20 46.10 13.90 73.90 106.10 106.10 73.90 13.90 46.10
26.00 43.00 17.00 77.00 103.00 103.00 77.00 17.00 43.00
21.80 40.89 19.09 79.11 100.91 100.89 79.09 19.11 40.91
13.20 36.59 23.40 83.41 96.60 96.59 83.40 23.41 36.60

Table 3.8: A table showing the angles made by primitive cell unrotated lattice vectors
and primitive cell rotated lattice vectors to the supercell lattice vectors.

α1,2, α1,1′ and α1,2′ , the angles made by ~A1 with ~a1, ~a2,
~a
′
1 and ~a

′
2 respectively. Similarly

the angles made by ~A2 with ~a1, ~a2,
~a
′
1 and ~a

′
2 are labeled as α2,1, α2,2, α2,1′ and α2,2′ .

We measured these angles for each of the twisted bilayers and have listed them in Table

3.8. It can further be shown that the reciprocal lattice vectors of both the primitive cells

also make the same angles with the supercell reciprocal lattice vectors as their real space

counterparts.

Now looking at Table 3.8 we find that, when we consider any supercell lattice vector and

look at angles made by the two sets of primitive lattice vectors (one from unrotated and

other from the rotated) and find that they both make an angle less than 30◦, there is a net

spin splitting. These cases have been listed in the upper half of the Table 3.8. Whereas

for the cases, where when we consider any supercell lattice vector and see that if one of

the primitive cell lattice vector make an angle which is less than 30◦ but the same lattice
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Figure 3.16: Schematic showing the contributions to K from the Brillouin zone of the
rotated and unrotated primitive cells

vector of the other primitive cell makes an angle between 30◦ and 60◦, there is no spin

splitting. These angles have been listed in the lower half of the Table 3.8.

In order to understand why in the cases where both primitive cell reciprocal lattice vectors

make an angle α1,1 and α1,1′ are less than 30◦, there is a spin splitting whereas there is

no net spin-splitting in the cases where one of these angle is between 0◦ and 30◦ whereas

the other one is between 30◦ and 60◦, we have to look at the Brillouin zones of both

the primitive cells and the supercells. This is shown in Figure 3.16, where the unrotated

primitive cell Brillouin zone is shown in blue and the Brillouin zone of the rotated primitive

cell is shown in red. The supercell Brillouin zone is shown in green. In this figure we have

shown one of the reciprocal lattice vectors in each case and defined the two angles both

the unit cells make with the supercell. What we found is that in the first case (First half

of the Table 3.8), K point both the primitive cell Brillion zones contributes to the K of

the supercell using the extraction method mentioned earlier whereas in the second case

(Second half of the Table 3.8), K from one of the primitive cell Brillioun zone and -K from

the other primitive cell Brillouin zone contributes at K of the supercell Brillouin zone.

The question that followed was what determines which k-point would contribute. To

understand this, we borrowed ideas from alloy theory for getting the weight of a primitive
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k point at a supercell one [31]. It is given by

Pi(k) =
∞∑
n=1

| < ψi(r)|unk(r)eik.r > |2 (3.4)

Here, ψi(r) is the eigenfunction of the supercell and unk(r)eik.r is the complete set of

Bloch functions of band index n, summed over of the projection at a given translationally

invariant wave vector k, which is inside the first Brillouin zone of the constituent mono-

layers. At the supercell K point, the contribution is from K or -K of the primitive cell is

determined by Equation 3.4. Since unk(r) for both K and -K is similar, the contribution

is determined by the phase factor eik.r in Eq.(1). The overlap depends on the cosine of

the angle between the primitive cell reciprocal lattice vectors and the reciprocal lattice

vectors. As a result, whenever both the angles shown in Figure 3.16 are less than 30◦ both

the K points contributes at K and when one of them is less than 30◦ but the other one

between 30◦ and 60◦ K from one and -K from the other contributes. Since the splitting

due to K is in opposite direction to that of -K, the net splitting is zero at K. This unusual

behavior of the spin splitting for rotation angle of θ and 60− θ can be attributed to the

symmetries of the hexagonal Brillouin zone.

3.4 Conclusion

In conclusion, we have explored bilayers of twisted MoSe2. We find that for arbitrary

angles of rotation θ, one could have a spin splitting at K point, while the calculated

electronic structure of 60 − θ has no spin splitting. The mechanism at work is not the

absence of inversion symmetry and can be related to the hexagonal symmetry of the

lattice. This clearly demonstrate that the presence of inversion symmetry is not the only

mechanism for vanishing spin splitting. Further the hexagonal symmetry of the lattice

determines how θ and 60− θ would behave.
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Chapter 4

In Search Of Planar Graphitic

Semiconductors

4.1 Motivation

Rapid minimization of devices has been the path followed by the electronic industry over

the past several years towards smaller and more efficient devices. However soon the

devices are going to enter a size regime where they will cease to be as efficient. Hence

there is a need to explore alternate routes to new generation devices. Two dimensional

materials have been intensively studied in this regard as they belong to the ultimate

lengthscale of minimization [1–7]. There has been an upsurge in realizing more and

more two dimensional materials, with useful electronic structure. Apart from layered

materials like transition metal dichalcogenides [8–11], which were discussed in the previous

chapters, there has been a lot of interest in obtaining two dimensional graphitic form

of semiconductors and heavy metals [12–15]. As mentioned in the previous work, the

hexagonal lattice of two dimensional materials play an important role in its electronic

structure. In this chapter we examine the structural properties of free standing II-VI and

III-V semiconductors at the monolayer limit in the first part. Our results showed that

while those formed by elements belonging to the first row of the periodic table formed

graphitic structures, those involving non first row elements required strain to stabilize

them. In the second part of the chapter we explore how one could use a substrate to

provide the strain and extend predictions made for free standing films to those on a

substrate.
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4.2 Structural Distortions in Monolayers Of Binary

Semiconductors

4.2.1 Introduction

The field of layered semiconductors have been rejuvenated recently with the isolation of

graphene. There has been an upsurge in research towards finding and isolating more and

more layered materials. Binary semiconductors like ZnO have been investigated for the

possibility of having a stable two dimensional structure [16]. These ionic semiconductors

favor the wurtzite structure in bulk. When films of these materials are grown without

any bias for the growth direction, the polar c-direction was found to be favored. This

was a surprise as one would associate a higher energy with a polar surface, as it has

no dipole moment associated with it. On closer analysis, a graphitic phase was found

to be formed [17], which solves the problem associated with the polar surface [18]. In

a graphitic phase one has a reduced coordination of atoms compared to the otherwise

observed wurtzite phase. The system compensates for the lost coordination by decreasing

the cation-anion bondlengths.

The natural question that followed was what happens to the compounds formed by

elements beyond the first row at a few monolayers limit? Can the nearest neighbor

bondlengths associated with these atoms with more extended wavefunctions be decreased

so that a graphitic phase is realized? This question has been addressed earlier in the

literature [21, 22]. The stability of the planar graphitic structure for the binary semicon-

ductors involving elements beyond the first row were analyzed by studying their phonon

dispersions which shows soft phonon modes indicating that these planar structures are

unstable at the monolayer limit [19, 20] in the literature and a buckled structure for the

monolayer has been proposed where the positively charged anions are at a different plane

from the negatively charged anions. This structure has a dipole moment associated with

it. This is surprising, as a polar surface should be energetically unfavorable. This led us

to examine the phonon dispersions and we found that the deepest phonon instabilities

were at M and K point. This suggested that a larger unit cell needed to be considered.

A non-polar buckled structure was found to have the lowest energy. One would expect

that a dominant contribution to the energy favoring the non-polar buckled structure to

be associated with the absence of dipoles. Calculating the dipole moment per unit cell

and evaluating its contribution to the total energy, one finds that it is negligible as the

electronic polarization cancels the ionic polarization. It is purely electronic considerations
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of a smaller Coulomb repulsion between electrons on cations and anions in the buckled

non-polar structure that leads to a lower energy.

The Coulomb repulsions can be decreased by increasing the cation-anion distance. One

of the methods to do this is by application of strain. So the next question we asked was,

can strain stabilize the planar graphitic structure in these materials. We took CdS as an

example and it was found that a strain of 2% could stabilize a planar graphitic structure.

Strain showed some unusual effects on the electronic structure of planar CdS. A strain of

3% was found to bring the valence band maximum (VBM) from Γ in the unstrained case to

the K-point in the strained case. This shifting of VBM from Γ to K gives an opportunity

to explore spin-valley physics in these materials [23]. The valence band maximum at K is

split by spin-orbit interactions. As time reversal symmetry cannot be broken by spin-orbit

interactions, the splitting at -K is opposite to that of K. This introduces an additional

label to identify levels and the unusual spin-valley physics discussed in the context of

transition metal dichalcogenides [24] can be explored here also. This opens up an entire

dimension of research in these materials.

4.2.2 Methodology

Monolayers of III-V and II-VI semiconductors have been generated by truncating two

monolayers of cation and anion cut out from a bulk wurtzite unit cell [25] growing in

the (0001) direction.The in-plane lattice constants (ab plane) were obtained after opti-

mization and a vacuum of 20 Å has been introduced in the c-direction between images in

the periodic unit cells used in our calculations. This is needed to break the periodicity

along the growth direction and thus to discard the interactions between images otherwise

present as we use periodic unit cells. In order to search for possible buckled structures

in the monolayer limit, an analysis of the phonon dispersions suggests a larger 6x2x1 su-

percell. Ground state energies have been calculated within a plane-wave implementation

of density functional theory using projector augmented wave (PAW) [26, 27] potentials

as implemented in Vienna Ab-initio Simulation Package (VASP) [28]. We have used the

local density approximation (LDA)for the exchange correlation functional because earlier

work in literature using LDA [29] have found very good agreement between structural

and elastic properties [30, 31]. Full geometrical optimization of internal coordinates have

been done in absence of any symmetry till an energy convergence of 10−5 eV and force

convergence of 5 meV/A have been achieved. A dense gamma centred mesh of 16x16x1

k-points has been used. A cutoff energy of 500 eV has been used for the plane wave ba-

sis.We have also used Hybrid functional HSE06 [32] with the Hartree Fock mixing factor
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equal to 0.2. To calculate the polarization, we have used the Berry phase [34] method as

implemented in VASP.

4.2.3 Results and Discussion

Bulk CdS has wurtzite structure, with a lattice constant of 4.136 Å [25]. From the bulk

wurtzite cell of CdS, one layer each of Cd and S were taken in order to examine if a

graphitic phase was stable. Atoms were allowed to relax, and a graphitic phase was

formed. It was found to be 197 meV/formula unit (f.u) lower in energy than the start-

ing wurtzite derived structure. The wurtzite phase has sp3 type bonding, whereas the

graphitic phase has sp2 type bonding. During this transformation from a three dimen-

sional structure to a two dimensional one, there is a shortening of Cd-S bondlength in

order to compensate for the lost coordination. Bulk Wurtzite and the planar graphitic

monolayer are shown in Figure 4.1

Figure 4.1: a) Bulk Wurtzite structure of CdS b) Planar graphitic structure at the bulk

lattice constant.

We then went on to probe if this planar graphitic structure was stable. To study its

stability, the phonon dispersions were calculated [35].
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Figure 4.2: The phonon dispersion of graphitic phase of a monolayer of CdS along different

symmetry directions using optimized in-plane lattice constants. The displacement of the

atoms corresponding to the eigenfunction for the unstable phonon mode in one unit cell

are shown in the inset. Reproduced from [35]

Figure 4.2 shows the phonon dispersions for planar CdS. Mode softening for one of the

acoustic phonon mode is found along the entire Brillouin zone. This suggests that the

planar graphitic structure is not stable. This can be attributed to the fact that the

spatial extension of the wavefunction of the valence orbitals of the anions is large for the

compounds involving elements beyond the first row. The Coulomb interaction between

the electrons on the anions and cations is therefore large. In order to reduce this repulsion,

the anions try to move away from the cations by moving out of the plane and the system

no longer remains planar. This led to a buckled structure being proposed in the literature,

which has cations in one plane and anions in the other. As a result, the system acquires a

dipole moment. Consequently, as more layers are added, the surface energy is expected to

diverge and the system tries to move away from this point.Therefore polar structures are

not expected to be realized beyond a few monolayers [36]. Various mechanisms like surface

reconstructions, adsorption of adatoms,vacancy formations, transfer of charges etc. may
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help to overcome this polar divergence and for a non-polar structure to be stabilized [37].

We start by examining the structures favored at the monolayer limit.

In order to understand this, we took a closer look at the phonon dispersions. It was found

that the deepest phonon instabilities are at M and K points. These have been found to

arise from the force on S ion trying to move them out of plane from that of the Cd atoms.

The non Γ character of the deepest phonon instabilities suggest that the movement of

atoms are in the opposite directions in the neighboring unit cells. This means if a S atom

moves out of plane in the upward direction in one unit cell, the S atom in the adjacent

unit cell will move in the downward direction. Considering this movement of anions, we

constructed a supercell of 6x2x1 and allowed the atoms to move out of the plane as shown

in Figure 4.3. Anions in the plane above and below the cation plane have been indicated

with Up and Dn respectively.

Up 

Up 

Up 

Up 

Up 

Up 

Up 

Up Dn 

Dn 

Dn 

Dn 

Up 

Dn 

Dn 

Dn 

Dn 

Dn 

Figure 4.3: Top view of relaxed buckled non-polar structure for CdS where Up(Dn) de-

notes the anions that have moved in positive(negative) z-direction.

As the unit cell in this case was large, we calculated the phonon dispersion at the gamma

point only and the phonon modes were found to be positive. On examining this buckled

structure, it was found that it has no net dipole moment as opposed to the previously

reported buckled structure. We considered a number of II-VI and III-V binary semicon-

ductors and constructed similar structures for each of them. Energies per formula unit
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of each of these structures were calculated and are compared in Table 4.1. Energies per

formula unit of both the structures were also calculated using hybrid functionals (HSE06).

E(BP-P) (eV) E(NBP-BP) (eV) E(NBP-BP) (eV) (HSE06)

CdS 0.000 −0.015 −0.016

CdSe −0.008 −0.049 −0.060

CdTe −0.027 −0.062 −0.083

ZnS 0.000 −0.011 −0.032

ZnSe −0.001 −0.039 −0.054

ZnTe −0.014 −0.050 −0.070

AlP 0.000 −0.018 −0.007

AlAs −0.016 −0.030 −0.034

GaP −0.020 −0.029 −0.037

GaAs −0.091 −0.025 −0.042

Table 4.1: Table comparing the energies of the Planar(P), Buckled Polar (BP) and Buckled

Non-Polar(BNP) structures for a monolayer of the listed semiconductor.

It can be seen that the non-polar buckled structure (BNP) is indeed lower in energy than

the polar buckled structure (BP) in all the cases, indicating that even at the monolayer

limit these semiconductors favor a non-polar structure. One might associate surface en-

ergy divergence from a polar surface being the reason for the non-polar buckled structure

being lower in energy with respect to buckled polar structure. In order to investigate this,

we calculated the dipole moment associated with the polar buckled structure. On analy-

sis we found that indeed the ionic dipole moment is high but the electronic polarization

almost compensates the ionic dipole moment. Hence the net dipole moment is very small

and is not enough to sustain an electric field. We calculated the net dipole moment and

the energy due to this (Table 4.2).

It can be seen that the energy due to the dipole moments are very small. Thus the surface

energy divergence due to the presence of dipole moment in the polar buckled structure

can not be the reason for it being higher in energy than our non-polar buckled structure.

To understand the reason behind the stability of the non-polar buckled structure we then

went on to examined the bondlengths in both the cases. The nearest neighbor cation-

anion and anion-anion bondlengths were measured in both the cases. These bondlengths

are listed in Table 4.3.

It can be seen that in the non-polar buckled structure, the cation-anion as well as the

anion-anion bondlengths have increased compared to the polar buckled structure, due
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Net Dipole moment eÅ E(dp)meV

CdS 0.0003 0.0
CdSe 0.0824 1.2
CdTe 0.0943 1.3
ZnS 0.0004 0.0
ZnSe 0.0409 0.3
ZnTe 0.0674 0.8
AlP 0.0007 0.0
AlAs 0.0832 1.5
GaP 0.0712 1.2
GaAs 0.0805 1.4

Table 4.2: Table showing the net dipole moment and the energy due to the dipole (E(dp))
for the buckled polar structure.

Polar Buckled Structure Non-Polar Buckled Structure
Cation-Anion Anion-Anion Cation-Anion Anion-Anion

CdS 2.40 4.16 2.44 4.23
CdSe 2.51 4.32 2.54 4.47
CdTe 2.70 4.59 2.74 4.79
ZnS 2.20 3.80 2.22 3.85
ZnSe 2.31 3.99 2.36 4.09
ZnTe 2.50 4.29 2.55 4.44
AlP 2.24 3.89 2.28 3.96
AlAs 2.35 4.03 2.39 4.16
GaP 2.28 3.87 2.29 3.99
GaAs 2.38 4.01 2.40 4.20

Table 4.3: Table showing the cation-anion and anion-anion bondlengths (in Å) for both
polar buckled and non-polar buckled structures
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Figure 4.4: Phonon dispersion of monolayer of planar CdS under 2% biaxial tensile
strain.This Figure has been taken from Ref( [35])

to which the Coulomb repulsion between the electrons on different atoms reduces, which

lowers the energy of the non-polar buckled structure. This idea has been further supported

by a breakup of the total energy into various components and is given in the Table 4.4

In order to further verify if that is the case, we constructed non-polar buckled structure

keeping the cation-anion bondlenths same as that of the polar buckled structure and

calculated the energies. It was seen that the difference in energies are now very small and

can be attributed to the difference in anion-anion bondlenths. Hence it can be concluded

from this analysis that the only reason for the non-polar buckled structure to be favored

is the increase in bondlenth which reduces the Coulomb repulsion between the electrons

on different atoms.

Another method of decreasing the Coulomb repulsion between the electrons is by sub-

jecting the system to biaxial tensile strain. A strain of 2%, 3% and 4% was applied

on planar CdS monolayer and their stabilities were checked by studying their phonon

dispersions [35]. Figure 4.4 shows phonon dispersions for 2 % strained planar graphitic

structure.
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CdS CdSe CdTe ZnS ZnSe ZnTe AlP AlAs GaP GaAs

Hartree BP 4,099.398 3,824.221 3,452.448 5,292.867 4,905.700 4,402.119 722.301 653.601 722.560 654.318

Energy(eV) BNP 4,040.153 3,745.800 3,375.044 5,233.907 4,818.262 4,321.735 703.309 629.739 698.752 624.183

Ewald BP 584.986 469.903 315.343 877.073 705.759 483.440 163.718 136.824 163.084 135.778

Energy (eV) BNP 554.377 429.458 275.408 846.204 659.641 441.335 153.488 124.534 150.769 120.501

-V(xc)+ BP 18.948 6.312 -21.749 70.256 57.595 29.451 -22.247 -37.219 -15.853 -30.733

E(xc) (eV) BNP 18.826 6.172 -21.874 70.158 57.456 29.338 -22.363 -37.306 -15.916 -30.789

Eband BP -184.646 -186.566 -175.230 -176.038 -178.163 -164.470 -60.040 -60.836 -65.032 -65.326

(eV) BNP -183.772 -185.504 -174.198 -174.856 -176.056 -162.814 -59.246 -60.451 -64.634 -65.129

Eatom BP 1,573.422 1,554.933 1,521.383 2,031.431 2,012.943 1,979.393 230.307 225.467 236.276 231.435

(eV) BNP 1,573.422 1,554.933 1,521.383 2,031.431 2,012.943 1,979.393 230.307 225.467 236.276 231.435

PAW double BP 33.498 42.913 68.399 -178.507 -168.800 -142.842 38.863 51.666 30.858 43.701

counting(eV) BNP 33.717 43.176 68.661 -178.215 -168.408 -142.523 38.901 51.695 30.906 43.744

Alpha Z BP 16.871 18.647 12.800 14.763 16.910 10.372 0.415 1.624 2.694 3.759

(eV) BNP 16.871 18.647 12.800 14.763 16.910 10.372 0.415 1.624 2.694 3.759

Table 4.4: Table showing the breakup of the total energies in the ab-initio calculations
performed using VASP are given. The energy associated with the sum of the occupied
eigenvalues is called Eband. It also includes the Hartree energy(electron-ion interaction).
This is the reason why 1/2 of the Hartree energy must be subtracted out while evaluating
the total energy. Ewald energy is the ion-ion interaction term.E(xc) and V(xc) are ener-
gies associated with the exchange and correlation functional. The PAW double counting
accounts for the double counting in the Hartree energy. All components in the above
Table must be added except the Hartree energy. 1/2 times the Hartree energy must be
subtracted out in order to get the total energy.
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Figure 4.5: Shift in Energy (in eV) of the highest occupied bands at Γ and K on application
of strain in planar CdS.

It can be seen that only positive phonon modes are present, indicating that the structure

is stable. Thus we have a rare realization of a sp2 bonded phase for CdS. We then went on

to examine the effect of biaxial tensile strain on the electronic structure of CdS monolayer.

The unstrained films are found to have their valence band maximum at Γ. The highest

occupied band at K is ∼ 0.2 eV deeper inside the valence band (Figure 4.5).

An analysis of the charge density (Figure 4.6) reveals that the valence band maximum

emerges from interactions between the Cd dx2−y2 , dxy and S py orbitals. However the

highest occupied band at K is contributed by anion-anion interactions between the S

pz orbitals. An empirical scaling law given by Harrison provides a relation of how the

hopping interaction strengths would scale with distance. According to this law, the pd

interactions scale as
1

r4
while the pp interactions scale as

1

r3
. This immediately provides

us with a handle of being able to control this separation. Introducing an in-plane tensile

strain, we find that, a 3% tensile strain pushes the highest occupied band at Γ, ∼ 0.16 eV

deeper. This emerges from the fact that these states are from antibonding Cd dx2−y2 , dxy

and S py interactions which moves deeper into the valence band as the strength of this

interaction is decreased. The variations are depicted pictorially in Figure 4.5, where the

electrostatic potential on a Cd atom are used as an internal energy reference to compare
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Figure 4.6: Charge density of the highest occupied band at Γ and the charge density of
the highest occupied band at K-point in planar CdS.

the movement of the highest occupied band between different calculations. There seems

to be an apparent movement of the highest occupied band at K to higher energies. The

movements are much smaller than that of the band at Γ, suggesting that other effects

such as charge transfer between Cd and S could modify the onsite energies, and lead to

the observed movement of the band to higher energies. The important consequence of

applying strain is that the band extrema shifts to K point at 3% strain. As discussed in

the introduction, spin-orbit effects lead to a spin splitting of the highest occupied band at

K point. This is found to be ∼20 meV in CdS and increases to ∼50 meV in CdTe. This

would then make these systems also important candidates for probing spin valley physics,

and additionally introduce drastic change in their transport behavior. This work has been

published in [38]. Another method to make use of this phenomenon is to use materials

where spin-orbit coupling strength is large like in heavy metals. In the next section we

discuss the realization of quasi free standing monolayer of a heavy metal taking bismuth

as an example.
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4.3 Route to planar Bismuthene

4.3.1 Introduction

Some members among two dimensional materials have been identified as topological insu-

lators [39–44] which can be potential candidates to be used in electronic industry. Topo-

logical insulators are materials which have an insulating bulk gap, residing in which are

robust metallic edge states which are insensitive to scattering by non-magnetic impuri-

ties. The properties of the edge states makes them suitable candidates for applications in

devices and hence there has been an avalanche of interest in the study of these materials.

More and more emphasis is being given in identifying and exploring such materials [45–47].

Quantum Spin Hall (QSH) insulator is one such class of recently discovered two dimen-

sional materials, in which electrons with up and down spins move in opposite directions

along the edge of the material. The successful theoretical model explaining QSH insula-

tor was given by Kane and Mele in 2005 [48, 49]. Subsequently in 2007 it was observed

experimentally in (Hg,Cd)Te [50]. After that, a lot of materials like silicene, germanene,

stanene, bismuthene etc have been predicted and shown to be quantum spin hall insula-

tors [51–53]. Most of these studied materials have very small band gap which limits their

operation to very low temperatures. Efforts are being made to realize such materials with

larger bandgap.

As a dominant contribution to the band gap is from spin-orbit interactions, heavier metal

atoms such as bismuth, antimony etc. were suggested as alternate candidates which

could give rise to a large band gap and consequently a room temperature quantum spin

hall effect [54, 55]. A lot of predictions of the properties of graphitic analogues with

heavier metals have been on freestanding substrates [56, 57]. In this work we identify a

few important criteria which would help us usefully implement the ideas developed for

freestanding members to those grown on a substrate.

In the previous section of this chapter we had shown that considering various III-V and

II-VI semiconductors which involve elements beyond the first row, freestanding graphitic

monolayers were found to be unstable. This was traced to the coulomb interactions

between electrons on neighbouring atoms destabilizing the structure. In these two di-

mensional structures, the nearest neighbour bondlengths are a few percent smaller than

the structures in three dimensions. This is primarily driven by the reduced coordination

they have in the graphitic phase and this drove the structural instability. As a result the

atoms adopted a buckled structure which allowed them to reduce the Coulomb interac-

tions between electrons on neighbouring atoms. Biaxial tensile strain of just a few percent
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increased the cation-anion bondlengths and thereby reduce the Coulomb interactions be-

tween electrons on neighbouring atoms. This stabilizes the structure. This required strain

can be provided by a substrate.

Also, in order to be able to use these monolayers for any device application, we need a

substrate. It holds the material as well as assists in its transferability. The substrate,

apart from providing the necessary strain for a graphitic growth should also be able to

interact weakly with the heavy metal so that it is not dislodged by the slightest amount

of vibration. At the same time, the interaction strength should be small so that it does

not modify the electronic structure of the heavy metal monolayer drastically.

In this work we have studied the properties of monolayer of bismuth (bismuthene), both

free standing and on different substrates. Our results indicate a stabilization of the

planar graphitic phase at a strain of 15.4%. We studied bismuthene on Ag(111) subtrate,

where it does provide the necessary strain for graphitic growth but Ag being metallic

interferes with the bismuth states near the Fermi energy and makes it metallic. We then

studied its growth on a hydrogenated SiC(0001) surface. We analyzed the energetics

involved in bismuth atoms replacing the hydrogen and found that it is energetically more

favorable for the bismuth atom to sit on top of the hydrogenated substrate. We then

went on to examine the electronic structure of this monolayer of planar bismuth formed

on hydrogenated SiC(0001). Hydrogenated SiC has a gap of 3.54 eV and Bi when grown

on it, introduces states within the gap. Similar to freestanding bismuthene we have two

Dirac cones at K point. One from pz and the other from px and py. However neither

is at the Fermi level. It thus needed orbital filtering to show properties similar to QSH

insulators. We then put one layer of hydrogen on top of bismuth so that it interacts with

the pz orbitals of bismuth and moves it away from the Fermi level. The electronic structure

now has a Dirac cone at the K point which opens up a gap of 0.8 eV when spin-orbit

interactions were introduced. Finally the nature of interaction of bismuth layer with that

of the hydrogenated substrate is discussed. It was seen that there is a small change in the

electrostatic potential, when bismuth is added on the hydrogenated substrate indicating

a small charge transfer. This keeps the bismuth layer attached to the substrate. We have

thus found a mechanism of growing bismuthene over SiC(0001) surface such that a quasi

free standing planar graphitic form of bismuth is formed, keeping its electronic structure

intact.
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4.3.2 Methodology

The bandstructure was calculated within a projector augmented-wave(PAW) [26, 27]

method implementation of density function theory (DFT) within the Vienna Ab-initio

Simulation Package (VASP) [28].The lattice parameters were kept fixed at the experi-

mental values while the internal positions were optimized in each case. In addition to

the optimization of internal positions, we included the optimization of the separation be-

tween different layers. This was done including van der Waals interactions implemented

using the DFT-D2 method of Grimme [58]. The electronic structure was solved self con-

sistently using a k-point mesh of 21x21x1. The plane-wave energy cut-off was taken as

500 eV. Perdew Burke-Ernzerhof potentials were used for the exchange correlation func-

tional [59,60]. Freestanding monolayer of bismuth was generated by truncating two layers

of bismuth atoms from the bulk bismuth unit cell grown in 001 direction. A vacuum of

20 Å was introduced in the c-direction between images in the periodic unit cells used in

our calculations. This is needed to break the periodicity along the growth direction and

thus to prevent the interactions between images otherwise present as we use periodic unit

cells.

4.3.3 Results and Discussion

We begin by looking at the bulk structure of bismuth. In its bulk form bismuth has

trigonal crystal structure with a = b = 4.54 Å and c = 11.86 Å, α = β = 90◦ and

γ = 120◦ [61]. For any Bi atom the first nearest neighbor distance is 3.07 Å and is in a

plane 1.59 Å above it. It forms layers of buckled hexagon, with each alternate atom in

the hexagon moving out of the plane and each layer being separated from the other by

2.36 Å as can be seen in the structure shown in Figure 4.7.

In our previous work on semiconductors involving elements beyond the first row of the

periodic table, we explored the possibility of a freestanding stable graphitic monolayer.

As we go down the periodic table, the wavefunction of the valance electrons become more

extended. This increases the Coulomb repulsion between the electrons on neighbouring

atoms, which makes the planar graphitic structure unstable and the system goes to a

buckled structure. A method explored to reduce the Coulomb repulsion was by applying

strain to the planar graphitic structure. A small biaxial tensile strain of 2% on CdS was

found to make it stable. As mentioned earlier and also indicated in Figure 4.7, two layers

of bismuth taken together form a buckled hexagon. The question we asked at this point

was can planar graphitic structure be stabilized with strain? In order to answer this we
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Figure 4.7: Structure of bulk Bismuth

calculated the total energy for both buckled and planar monolayer of bismuth by varying

the lattice constant in steps of 0.1 Å. The results are shown in Figure 4.8

We find that near the bulk lattice constant, energy of the buckled monolayer was lower

than the planar graphitic one. As we start increasing the strain the energy of the planar

graphitic phase starts decreasing and around a lattice constant of 5.24 Å which corre-

sponds to a strain of 15.4%, there is a crossover and the energy of the planar graphitic

structure is lower than its buckled counterpart. This strain could be provided by a suitable

choice of substrate and depending on the interaction of the substrate with the bismuthene

monolayer, the percentage of strain which can stabilize a planar graphitic structure can

vary.

Before discussing the substrate and its role in determining the electronic structure of

bismuthene, we examine the electronic structure of this freestanding planar graphitic

monolayer of bismuth. The bandstructure for planar freestanding bismuthene is shown in

Figure 4.9

The bandstructure of freestanding bismuthene show some interesting features. We can

see that at the K point in the Brillouin zone px, py and pz orbitals form two Dirac points,

which are slightly shifted from the Fermi energy. In order to bring the Dirac point to the

Fermi energy one needs to push the pz bands out by orbital filtering. This can be done by

using a substrate, which will interact with the pz band bring the Dirac point formed by
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Figure 4.8: Variation of Energy with lattice constant for freestanding planar and buckled
Bismuthene

Figure 4.9: Bandstructure of planar freestanding bismuthene calculated along various
symmetry directions
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Figure 4.10: Layer of bismuth atoms on Ag(111) slab

px and py orbitals to the Fermi energy. The substrate apart from providing the strain for

the planar graphitic structure to be stabilized also helps in keeping the monolayer intact

and helps in its transferability.

We looked for possible substrates which can be used. Ag(111) surface has been used often

in literature as a possible substrate to grow monolayers of heavy metals [63, 64]. Ag has

a lattice constant of 4.085Å [62]. Ag(111) surface with a reconstruction of
√

3x
√

3 R 30◦

has a lattice constant of 5.004Å. This corresponds to a strain of 10.22%. We explored

this as a candidate for the substrate to grow planar bismuthene. We constructed a slab of

Ag(111) with 10 Ag layers. Bismuth atoms were placed on both the surfaces of the slab

to make it symmetric. Ag(111) has ABC stacking as shown in Figure 4.10 i). There are

three possibilities where the bismuth atom can sit. We explored all three possibilities as

shown in Figure 4.10

We found that configuration i) where the bismuth atom sits on top of the top layer of

the Ag atoms of the slab to be the lowest in energy. This suggests it prefers atom on

atom growth because bonding in such cases is favored compared to the other two cases.

We then went on to examine the electronic structure of this structure. This is shown in

Figure 4.11. We can see that since Ag is metal, bands associated with it crosses the Fermi

energy and makes the system metallic.
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Figure 4.11: Bandstructure of bismuthene on Ag(111) substrate calculated along various
symmetry directions

We then went on to examine other possible substrate to grow bismuthene. SiC(0001) has

been considered a good choice in literature since it is a semiconductor. Single monolayer

of Bismuth grown on SiC(0001) substrate has been shown to be a toplogical insulator.

We first examined the route proposed to achieve this in detail [67]. SiC has a bulk lattice

constant 3.079 Å [65].
√

3x
√

3 R 30◦ supercell of SiC has a therefore a lattice constant

of 5.333 Å. Starting from the bulk wurtzite structure of SiC, we took two layers of SiC

terminated with Si on top. We then passivated it on both the sides with hydrogen atoms

to remove the dangling bonds. We examined the bandstructure of this hydrogenated

SiC and found it to have a bandgap of 3.56 eV. The hydrogenated SiC structure and its

bandstructure calculated along various symmetry directions are shown in Figure 4.12.

On this hydrogenated SiC we examined the possible mechanism of placing bismuth. One

of the possibilities discussed in literature is that the bismuth atom replaces the hydrogen

atom and forms a bond with the silicon atom [67]. We examined this process carefully and

calculated the energy involve in this process. We calculated the formation energy when

a hydrogen is removed from the hydrogenated SiC and also when a Bi atom replaces one

hydrogen. In order to calculate the formation energies we used the following formula [66]

∆Hf (α) = E(α)− E(0) +
∑
α

∆nαµ
a
α (4.1)
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Figure 4.12: Hydrogenated SiC and its bandstructure calculated along various symmetry
directions.

Here, E(α) represents the total energy of the supercell with defect α and E(0) is the

total energy of the supercell without defect. The number of defect atoms is given as nα.

The value of nα = −1 if an atom is added, while when an atom is subtracted nα = 1.

µaα is the absolute value of the chemical potential of a given atom labeled as α. Now as

we know, the formation energies are defined with respect to the elemental solid(s), µaα is

given as the sum of all the components because of element in its most commonly occurring

structure µsα and excess chemical potential µα (µaα = µsα+µα). In our case µsα for H and Bi

are energies obtained after full optimization of elemental solids in their observed crystal

structures. For our case µα of Bi is negligible as we examined the formation energy of

BiH3 and it was very small.

Using this, we found that the formation energy of removal of a hydrogen atom from

hydrogenated SiC surface was 4.14 eV and the formation energy of replacing a Bi atom

with that of a hydrogen atom from the hydrogenated SiC substrate was 4.76 eV. We have

depicted these two processes in the Figure 4.13.

We then went on to explore another route to achieve planar bismuthene on SiC substrate.

We placed two bismuth atoms on top of hydrogenated SiC. They sit at a height of 2.96

Å from the hydrogen layer. Using Equation 4.1 we calculated the formation energy of
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Figure 4.13: Formation energies involved in obtaining Bismuthene

this process and we find it to be 0.53 eV. From this analysis, we can say that, Bi atoms

would prefer to sit on top of hydrogenated SiC rather than replacing a hydrogen. We

then examined the bandstructure of this structure. This has been shown in Figure 4.14.

On examining this bandstructure we find it remarkably similar to the bandstructure of

a freestanding bismuthene which is shown in Figure 4.9. It has all the features of a free

standing layer of bismuthene. Thus by growing bismuth on top of a hydrogenated SiC

substrate, we obtain a planar graphitic bismuthene with all the features predicted for

its freestanding form. Similar to its freestanding counterpart, this structure also needs

orbital filtering to get the dirac point at Fermi energy. In order to do so, we place hydrogen

again on top of the bismuth layer so that it interact with its pz orbitals and push it away

from the gap region. We then calculated the bandstructure of this quasi freestanding

bismuthene. It is shown in Figure 4.15.

The bandstructure of this quasi freestanding bismuthene thus obtained now has the Dirac

point at the fermi energy. This quasi freestanding bismuthene obtained by this method

has the properties of a topological insulator of having the Dirac point at the Fermi energy.

It is also important that this quasi free standing monolayer of bismuth remains attached

to the substrate. This can happen if there is some interaction between the substrate

and the Bismuth layer. We therefore investigated the nature of interaction between the

Bi monolayer and the substrate. For this we looked at the possibility of charge transfer
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Figure 4.14: Hydrogenated SiC with a layer of Bi on top of H and its bandstructure
calculated along various symmetry directions.

Figure 4.15: Quasi freestanding bismuthene its bandstructure calculated along various
symmetry directions.
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Figure 4.16: Electrostatic potential of the substrate and the quasi freestanding bismuthene

which can lead to bonding between the layers. In order to study that we looked at the

electrostatic potential of the substrate and the quasi freestanding bismuthene. This has

been shown in Figure 4.16.

In Figure 4.16, the red curve is for the substrate while the black one is for the quasi

freestanding bismuthene. A, B, C, D, E and F represent the position of H, C-Si first

layer, C-Si second layer, H, Bi and H respectively (shown in inset of Figure 4.16). We

wanted to understand the interaction between the bismuth layer and the hydrogenated

substrate so we examine the curves around point D. This portion is zoomed in and shown

in the inset of Figure 4.16. It shows the difference between the two curves. We can see

that due to the presence of bismuth layer in the black curve these is a significant deviation

from the red one. This conclusively shows that there is a weak interaction between the

hydrogenated substrate and the bismuth layer, leading to a small charge transfer which

will keep the bismuth layer intact over the surface.

4.4 Conclusion

In conclusion, the present investigation examines the structure favoured by monolayers of

group II-VI and III-V semiconductors. A non-polar buckled structure has been found to
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be energetically more favourable than a polar buckled one. Reduced Coulomb repulsion

between the electrons on the anion and cations because of increased bondlengths in the

non-polar structure compared to the polar one plays a major role in stabilizing it. A biaxial

tensile strain of 2% is capable of eliminating the buckling in such structures stabilizing a

graphitic analogue. Additionally, with 3% biaxial tensile strain, the position of the VBM

shifts from Γ to K point which makes them suitable candidates for exploring spin valley

physics.

We further went on to explore the formation of free standing monolayer of heavy metals

taking Bismuth as an example. They have been predicted to be large gap topological

insulators. The realization of such models have failed as the presence of a substrate for

growing the monolayers, usually interacts with the monolayer and makes its properties

substantially different from that of a freestanding one. We have explored a route to quasi

free-standing bismuthene, and additionally a possible explaination for the growth of quasi

free standing bismuthene on a substrate that has been explored experimentally.
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[47] M. Wada, S. Murakami, F. Freimuth and G. Bihlmayer Phys. Rev. B83, 121310(R)

(2011).



106 BIBLIOGRAPHY

[48] C. L. Kane and E. J. Mele Phys. Rev. Lett. 95, 226801 (2005)

[49] C. L. Kane and E. J. Mele Phys. Rev. Lett. 95, 146802 (2005)
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Chapter 5

The Role Of Spin-Orbit Coupling On

Magnetism In Sr2IrO4

5.1 Introduction

Sr2IrO4 is a 5d oxide and belongs to a series of material called the Ruddlesden-Popper

series, which has a general formula Srn+1IrnO3n+1 [1,2]. It is a series of layered perovskites

which consists of n IrO2 layers with double layers of SrO in between, stacked along c

axis. Here n represents the number of layers that are immediately adjacent. For n = 1,

there are single layers of IrO2 that are separated by SrO layers. For n = 2, there are

two layers of IrO2 forming a bilayer structure that are separated by SrO layers. When

n = ∞ the system is purely three dimensional. The electronic configuration of the ions

in these systems are Sr2+(4p6), Ir4+(5d5) and O2−(2p6). Figure 5.1 shows the structure of

Srn+1IrnO3n+1 for n = 1, n = 2, n = 3 and n =∞ [3].

Members of this series exhibit varied properties, like Sr2IrO4 is an antiferromagnetic

insulator [4–7], whereas SrIrO3 is a non magnetic metal [8–11]. The properties of these

compounds can be understood by looking at their electronic structure. The spatial extent

of 5d orbitals is large. As a result, they have a large bandwidth (W) and a small on-site

Coulomb interaction (U). The relative strength of W and U in these materials determine

their electronic structure. The bandwidth W increases as we go from n = 1 to n = 2

to n = ∞ in the series. As a result, the properties changes gradually as from being an

insulator for n = 1 to barely insulating for n = 2 to metallic for n = ∞ [12]. This has

been shown schematically in Figure 5.2.
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Figure 5.1: Structure of Srn+1IrnO3n+1 for n = 1, n = 2 n = 2 and n = ∞. Reproduced
from [3]

Figure 5.2: Schematic of the electronic structure of Srn+1IrnO3n+1 for n = 1, n = 2 and
n =∞. Reproduced from [12]
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In this work we studied one of the members of this series, Sr2IrO4 which is an antiferro-

magnetic insulator. Spin-orbit coupling plays an important role in making it insulating

as well as magnetic [13–17]. We briefly discuss both these aspects here focusing on the

role played by spin-orbit interactions.

Iridum atoms in Sr2IrO4 is in an octahedral environment with the oxygen atoms. As a

result, crystal field splitting lifts the degeneracy of the d orbitals. The spin-orbit coupling

then splits the t2g orbitals of the iridium atom into four fold degenerate, fully filled

Jeff=3/2 and two fold degenerate half filled Jeff=1/2 states. Since Jeff=1/2 bands are

half filled, U opens up a gap, making it an insulator.

The widely accepted picture of magnetism in solids focuses on the existence of localized

electrons and the ordering of their local moments leading to different types of magnetic

ordering. As a result, 3d transition metal oxides like SrMnO3 (TN = 233K) [18] and

Sr2FeMoO6 (TN = 410-450K) [19] which have highly correlated electrons are associated

with high magnetic ordering temperatures. 4d and 5d oxides which do not have highly

correlated electrons are not expected to show magnetic ordering. But some of the 4d

and 5d oxides (SrTcO3 ; TN =1024 K [20], CaTcO3 ; TN = 800 K [21], Ba2IrO4 ; TN

= 240 K [23], NaOsO3 ; TN = 410 K [22]) show high magnetic ordering temperatures.

The problem was investigated for the case of SrTcO3 and CaTcO3. The high ordering

temperature in these materials was attributed to the d3 configuration at the transition

metal site, which leads to the half filling of the t2g states and allows electrons to be localized

in an anti-ferromagnetic configuration only [24]. In this project we examine the role played

by spin-orbit coupling in stabilizing high magnetic ordering temperature in Sr2IrO4 using

a multiband Hubbard Hamiltonian with spin-orbit coupling term incorporated in it. We

find that for a very narrow regime of U value, the antiferromagnetic state is stabilized.

5.2 Methodology

The bandstructure was calculated within a projector augmented-wave method implemen-

tation of density function theory (DFT) within the Vienna Ab-initio Simulation Package

(VASP) [25,26]. The experimental crystal structure of Sr2IrO4 was taken with the lattice

constant of 5.498 Å [27]. The lattice parameters were kept fixed at the experimental

values while the internal positions were optimized. The electronic structure was solved

self consistently using a k-point mesh of 7x7x3. Perdew Burke-Ernzerhof potentials were

used for the exchange correlation functional [28,29]. Interaction parameters were obtained

by fitting the non-magnetic ab-initio bandstructure on to a tight binding model. For the

tight binding model, the basis used were Ir d, O s and O p. Hopping is considered between



112 Chapter 5 The Role Of Spin-Orbit Coupling On Magnetism In Sr2IrO4

Ir d, O s and O p. These hopping interactions (tij’s) were parametrized in terms of the

Slater-Koster parameters pdσ, pdπ, sdσ, ppσ and ppπ. This formed the one electron part

of the Hamiltonian given below.

H =
∑
i,l,σ

εpp
†
ilσpilσ +

∑
i,l,σ

εdd
†
ilσdilσ −

∑
i,j,l1,l2,σ

(
tl1,l2i,j,ppp

†
i,l1,σ

pj,l2,σ + H.c.
)

(5.1)

−
∑

i,j,l1,l2,σ

(
tl1,l2i,j,pdd

†
i,l1,σ

pj,l2,σ + H.c.
)

+
∑

α,β,γ,δ,σ1,σ2,σ3,σ4

Uαβγδ
dd d†ασ1d

†
βσ2
dγσ3dδσ4

Here p†ilσ and pilσ creates and annihilates an electron with spin σ in the lth p orbital on

O in the ith unit cell respectively. d†ilσ and dilσ crates and annihilates an electron with

spin σ in the lth d orbital on Ir in the ith unit cell respectively. Uαβγδ
dd is the Coulomb

interactions between electrons on Ir site. A mean-field decoupling scheme has been used

for the four fermion operator terms (d†i↑di↑d
†
i↓di↓) and is given by

d†i↑di↑d
†
i↓di↓ = 〈d†i↑di↑〉d

†
i↓di↓ + d†i↑di↑〈d

†
i↓di↓〉 − 〈d

†
i↑di↓〉d

†
i↓di↑ − d

†
i↑di↓〈d

†
i↓di↑〉 (5.2)

−〈d†i↑di↑〉〈d
†
i↓di↓〉+ 〈d†i↑di↓〉〈d

†
i↓di↑〉

The Hamiltonian is then solved self-consistently for the order parameters [30]. The spin-

orbit interaction was incorporated as

HSO = λ
−→
L ·
−→
S = λ (LxSx + LySy + LzSz) = λ

(
1

2
L+S− +

1

2
L+S− + LzSz

)
(5.3)

Here λ is the spin-orbit coupling constant,
−→
L is the orbital angular momentum and

−→
S is

the spin angular momentum. Lx(Sx), Ly(Sy) and Lz(Sz) are the x, y and z components

of orbital angular momentum (spin angular momentum) respectively. Also, L+(S+) and

L−(S−) are the raising and lowering operators for orbital angular momentum (spin angular

momentum) respectively.
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5.3 Result and Discussion

We begin by looking at the structure of Sr2IrO4 in detail. Sr2IrO4 has a tetragonal unit

cell with the lattice vectors given as a = b = 5.498Å while c = 25.798Å (shown in Figure

5.6). It has layers of distorted Ir-O octahedra separated by layers of Sr atoms. Each Ir-O

octahedra has tetragonal distortion leading to longer Ir-O bonds in the z-direction, than

in the x-y plane. Sr2IrO4 is reported to be an antiferromagnetic insulator with a bandgap

of ∼ 0.1 eV [14].

We calculated the non-magnetic bandstructure for Sr2IrO4 using first principle ab-initio

calculation, then the tight binding parameters were determined by least square error min-

imization of the ab-initio bandstructure within the tight binding model. Bandstructure

obtained by both these methods are shown in Figure 5.3 and the parameters obtained are

listed in Table 5.1.

30 60 90

-1

-0.5

0

0.5

E
n
er

g
y
 (

eV
)

0

-1

-0.5

0

0.5

E
n
er

g
y
 (

eV
)

Γ M

____ Ab-initio

X Γ

_ _ _  Tight binding

Figure 5.3: Non-magnetic bandstructure of Sr2IrO4 using ab-initio (solid black line)

method and tight binding (dashed red line) along various symmetry directions. Γ, M

and X are taken to be (0.0, 0.0, 0.0), (0.5, 0.5, 0.0) and (0.5, 0.0, 0.0) respectively.
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Es Epx,py Epz Edxy Edyz Edzx Ex2−y2 Ez2

Ir - - - 1.82 1.82 1.82 2.51 2.51

O1 −16.36 0.38 1.22 - - - - -

O2 −13.05 1.45 1.09 - - - - -

E(Ir, Ir) E(Ir, O1) E(Ir, O2) E(O1, O1) E(O2, O2) E(O1, O2)

ddσ −0.25 - - - - - - -

ddπ 0.21 - - - - - - -

ddδ −0.23 - - - - - - -

dsσ - −3.00 −3.55 - - - - -

dpσ - 2.44 2.53 - - - - -

dpπ - −1.45 −1.45 - - - - -

ppσ - - - 0.59 0.39 0.05 - -

ddπ - - - −0.40 −0.28 −0.25 - -

Table 5.1: Parameters obtained from least-squared-error fitting of the ab-initio band

structure onto a tight binding model for Sr2IrO4.

We then plotted the density of states of Ir d states using our tight binding model and it is

shown in Figure 5.4. At this level of we do not have U and spin-orbit interactions included.

Here we can see that all the three t2g orbitals (dxy, dyz and dxz) are occupied whereas

the two eg orbitals (dx2−y2 and dz2) are unoccupied. This demonstrates the octahedral

splitting of the Ir d states an the octahedral environment.

After this we incorporated spin-orbit coupling term in the hamiltonian. This splits the

occupied, t2g orbitals into Jeff=3/2 which is fully filled and Jeff=1/2 which is half filled.

Now, introduction of U splits the half filled Jeff=1/2 bands into fully occupied upper

hubbard band (UHB) and completely unoccupied lower hubbard band (LHB) opening up

a gap and making Sr2IrO4 an insulator as shown in Figure 5.5

The splitting of the partly occupied t2g orbitals by spin-orbit coupling into Jeff=3/2 and

Jeff=1/2 and subsequently formation of UHB and LHB due to U also plays a very impor-

tant role in understanding the magnetism in this material. In order to understand this

we studied the electronic structure at different values of U considering various magnetic

configurations which are shown in Figure 5.6b and 5.6c. In the case shown in Figure 5.6b,

the magnetic moments on Ir atoms are antiferromagnetically aligned in one plane whereas

the the case shown in Figure 5.6c the magnetic moments are ferromagnetically aligned in

one plane.



5.3 Result and Discussion 115

Figure 5.4: Orbital projected density of states for Ir atom

Figure 5.5: Schematic of the electronic structure of Sr2IrO4
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Figure 5.6: Various magnetic configurations considered for Sr2IrO4

We present the results at two different U values here, U=1.0 eV and U=1.5 eV. At both

these U values, we have taken the spin-orbit coupling to be 0.4 eV [14]. At U=1.0 eV

we find that the antiferromagnetic configuration is stable by 114 meV as compared to

the other configuration. The magnetic moment in this case is 0.08 µB per iridium atom

in the xy plane. The bandstructure for this case, calculated along different symmetry

directions are shown in Figure 5.7 with Fermi energy at 0. We can see that the valence

band maximum is at the Γ point whereas the conduction band minimum is near the X

point, making it an indirect bandgap material. The bandgap at this value of U and spin-

orbit coupling is found to be 0.12 eV. As we start increasing U and go to U=1.5 eV, we

find that the two magnetic configuration considered by us are energetically degenerate.

Antiferromagnetic state is no longer energetically favored state. In this case, the moment

on the iridium atom is 0.12 µB in the xy plane. Figure 5.8 shows the bandstructure of

Sr2IrO4 calculated along various symmetry directions at U=1.5 eV with Fermi energy at

0. The position of the valence band maximum and the conduction band minimum in this

case remains the same as U=1.0 eV. The bandgap however increases to 0.5 eV.

In order to understand this magnetic behaviour of Sr2IrO4 at different U regime, we take

a closer look at the bandstructure in the two cases. We can see that at U=1.0 eV, the
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Figure 5.7: Bandstructure of Sr2IrO4 using multiband hubbard hamiltonian with spin
orbit coupling included for U=1.0 eV, SO=0.4eV along various symmtery directions.
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Figure 5.8: Bandstructure of Sr2IrO4 using multiband hubbard hamiltonian with spin
orbit coupling included for U=1.5 eV, SO=0.4eV along various symmtery directions.
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Figure 5.9: Schematic explaining magnetic stability for U=1.0 eV compared to U=2.0 eV

dispersional width of the conduction band is ∼0.4 eV whereas when we go to U=1.5 eV it

decreases to ∼0.25 eV. This can be understood as follows. As explained earlier, Jeff=1/2

band is half filled and with the introduction of U it splits into UHB and LHB. This can be

represented as shown in the Figure 5.9. We have up spin at Ir1 site and down spin at Ir2

site. The downspin at Ir1 is unoccupied whereas the upspin at the Ir2 site is unoccupied.

Now when U=1.0 eV the separation between the occupied and the unoccupied band is

small and hence each of the spin can hop to the next site as is shown in the Figure 5.9.

As a result antiferromagnetic configuration in this case becomes stable as it gains energy

by hoping. This is reflected from the dispersional width of the conduction band in this

case (Figure 5.7). Now as we start increasing U and goto the case of U=1.5 eV we see

that the separation between the occupied and the unoccupied states increases so much

that hopping between neighboring site is reduced considerably and the gain in energy by

this process is less, hence all the magnetic configurations are degenerate in energy. This

is also reflected in the decreased dispersional width of the conduction band in this case,

as can be seen in Figure 5.8

5.4 Conclusion

5d transition metal oxide, Sr2IrO4 has interesting electronic structure. Inspite of electron-

electron correlation being low in this material it is an antiferromagnetic insulator. In

this work within a multiband hubbard hamiltonian framework we try to understand the

electronic structure as well as the role played by various interactions specially spin-orbit

coupling in stabilizing long range magnetic ordering. We find that only for a very narrow

region of U around 1.0 eV we have the antiferromagnetic state stable due to gaing in
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energy resulting from hoping between the occupied and the unoccupied states in that

regime of U.
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Appendix A

A.1 Monte Carlo Simulation For Heisenberg Model

Monte Carlo simulations are computational methods to model the probability of different

outcomes for processes where the time dependence of the growth or the change does not

follow a very rigid or rigorous rules and can not be predicted. It is often used in Physics,

mathematics, economics, engineering, finance etc. to solve problems like flow through

porous rocks, behavior of dilute magnets, diffusion limited aggregation. It is used to solve

problems which have a probabilistic interpretation. In physics Monte Carlo has been

in use for a long time. In 1949 Metropolis and Ulam presented a review of the use of

Monte Carlo simulations [1]. They enumerated the advantages of the use of this method

to solve problems. his method is based on repeated random sampling of phase space and

computing the results using statistical analysis.

During the course of this thesis, we used Monte Carlo simulation to calculate magneti-

zation in dilute magnetic semiconductors, which was inturn used to get the transition

temperature within a classical Heisenberg Model. In the next section we first discuss

the Heisenberg Model then the Metropolis algorithm, which has been used for producing

samples.

A.2 Heisenberg Model

Heisenberg Model is a vector model which is used in statistical physics to model a magnetic

system. This model is given as

H = −
∑
i,j

Ji,j ~Si · ~Sj (A.1)
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here, Ji,j is the exchange interaction between nearest neighbor sites. It can have a pos-

itive or a negative value representing ferromagnetic and antiferromagnetic configuration

respectively. ~Si and ~Sj are the spin on the i-th and the j-th sites respectively. In a

Heisenberg model, spins can take all possible directions. One way to do this is to work

in spherical coordinates, by varying θ and φ from 0 to π and 0 to 2π respectively using

random numbers one can assign any direction to the spin.

A.3 Metropolis Hastings Algorithm

The Metropolis Hastings algorithm is an algorithm for producing samples from a distribu-

tion. It is very commonly used in Monte Carlo simulations. It was proposed by Nicholas

Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller [3]. In this

method one can generate configurations from a previous state using a transition probabil-

ity. This transition probability depends on the energy difference between the initial and

final states.

The scheme of Metropolis Hastings algorithm is as follows:

1. An initial state is chosen by randomly assigning spins to the sites randomly.

2. Total energy of the system is calculated using for that state.

3. A site i is chosen.

4. The spin at the site i is changed randomly.

5. Total energy is again calculated. If the change in energy (∆E) is negative, the new

configuration at i is accepted.

6. If ∆E is positive, a random number r is generated such that 0 < r < 1. If r <

exp(−∆E/kBT ), the new configuration is accepted.

7. Go to the next site and go to step 4.

The important point to note here is that the successive random number generated should

be uncorrelated and it should be chosen uniformly between 0 and 1. This is done for all

the sites till equilibrium is reached. Once equilibrium is reached, various properties of the

system is calculated.
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A.4 Results

In our work a Heisenberg model of the form given in Equation A.1 is considered. Exchange

interaction strengths entering this model were extracted until fourth neighbor from our

calculations and solved for a lattice with 6912 sites with 3.125 % magnetic doping. The

distribution of the magnetic atoms were kept random in six cases. Starting from a random

configuration of spins the system was brought to a thermal equilibrium within 2x107 Monte

Carlo steps for every temperature cycle. Once the system goes into thermal equilibrium,

magnetization of the lattice was calculated using

M =
√
M2

X +M2
Y +M2

Z where MX/Y/Z =
N∑
i=1

S
X/Y/Z
i

(A.2)

Magnetization per site (mi) is then calculated by normalizing this over the system size.

The arithmetic average of mi over many configuration is calculated and averaged over to

get the ensemble average of magnetization given as

〈m〉 =
1

mcs

mcs∑
i

mi (A.3)

Important point here to note that magnetization is calculated only after the system has

reached equilibrium. Some of the results obtained by the Monte Carlo code written by

me can be found in references [4]
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